Editor-In-Chief

Dr. Shiv Kumar
Ph.D. (CSE), M.Tech. (IT, Honors), B.Tech. (IT)
Senior Member of IEEE, Member of the Elsevier Advisory Panel
Chairman, Lattice Science, Bhopal (MP), India
Director, Lattice Science Publication, Bhopal (MP), India
CEO, Blue Eyes Intelligence Engineering and Sciences Publication, Bhopal (MP), India

Specialization: Signal Processing, Image Processing and Recognition, Compression and Decompression

Editors

Dr. Ahmed A. Elngar
Ph.D.(CS), M.Tech.(CS), B.Sc.(CS)
Member of IEEE, ACM, Elsevier, Springer
Assistant Professor, Faculty of Computers & Artificial Intelligence, Department of Computer Science, Beni-Suef University Beni-Suef, Egypt.

Specialization: Internet of Things (IoT), Network Security, Artificial Intelligence

Dr. Basant Kumar Verma
PhD.(CSE), M.E.(CSE), B.Tech.(IT)
Professor, Department of Computer Science and Engineering, G.H. Raisoni College of Engineering, Nagpur (Maharashtra), India.

Specialization: Data Warehousing, Data Science with Python & R Language, Big Data Analytics

Dr. Purushottam Bhari
PhD.(Computer Science), MCA(Computer Science), BCA(Computer Science)
Assistant Professor, Department of Computer Science and Engineering, Compucom Institute of Information Technology and Management, Jaipur (Rajasthan), India.

Specialization: AI in Education System, Machine Learning

Dr. A. Prakash
PhD.(CSE), ME.(CSE), BE.(CSE)
Assistant Professor, Department of Computer Science and Engineering, Veltech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology, Chennai (Tamil Nadu), India.

Specialization: Network Security, Artificial Intelligence, Web Technology

Dr. Karimisetty Sujatha
Ph.D., M.Tech., B.E.
Member of Springer
Professor, Department of Computer Science and Engineering, Dadi Institute of Engineering and Technology, Visakhapatnam (A.P), India.

Specialization: Information Security, Machine Learning, Big Data
<table>
<thead>
<tr>
<th>Author(s) Name</th>
<th>Title of the Article</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kamlesh Sharma, Nidhi Garg, Arun Pandey, Daksh Yadav, Nikhil</td>
<td>Plagiarism Detection Technique using Wvw and Wordnet</td>
<td>1-1</td>
</tr>
<tr>
<td>Jaya Kumari, Kailash Patidar, Gourav Saxena, Rishi Kushwaha</td>
<td>A Hybrid Enhanced Real-Time Face Recognition Model using Machine Learning Method with Dimension Reduction</td>
<td>3-4</td>
</tr>
<tr>
<td>M.S. Antony Vigil, Rishabh Jain, Abhinav Chandra, Tanmay Agarwal</td>
<td>A Novel Data-Driven Optimal Methodology for Detecting Ship from Sar Images Based on Artificial Intelligence</td>
<td>4-5</td>
</tr>
<tr>
<td>Judy Flavia, Aviraj Patel, Diwakar Kumar Jha, Navnit Kumar Jha</td>
<td>A Wearable Brain-Computer Interface Instrument with Augmented Reality-Based Interface for General Applications</td>
<td>5-5</td>
</tr>
</tbody>
</table>
Author(s): Kamlesh Sharma, Nidhi Garg, Arun Pandey, Daksh Yadav, Nikhil

Title of the Article: Plagiarism Detection Technique using www and Wordnet

Abstract: Plagiarism is an act of using another person’s words, idea or information without giving credit to that person and presenting them as your own. With the development of the technologies in recent years, the act of Plagiarism increases significantly. But luckily the plagiarism detection techniques are available and they are improving day by day to detect the attempts of plagiarizing the content in education. The software like Turnitin, iThenticate or SafeAssign is available in the markets that are doing a great job in this context. But the problem is not fully solved yet. These software(s) still doesn’t detect the rephrasing of statements of another writer in other words. This paper primarily focuses to detect the plagiarism in the suspicious document based on the meaning and linguistic variation of the content. The techniques used for this context is based on Natural language processing. In this Paper, we present how the semantic analysis and syntactic driven Parsing can be used to detect the plagiarism.

Keywords: Natural Language Processing(NLP), Information Retrieval(IR), Cross-Language Information Retrieval(CLIR), Computational Linguistics, Wordnet, world wide web.

References:

Author(s): Dinesh Kumar, Kailash Patidar, Gourav Saxena, Rishi Kushwaha

Title of the Article: A Hybrid Visual Cryptography Method using Sigmoid Function for Security Enhancement in Gray Scale Images

Abstract: Visual encryption technology becomes the latest research area in which a lot of scopes persist. Presently such a particular cryptosystem procedure is now used by numerous other countries around the world for the private transmission of formal records, financial documents, content visuals, digital voting, and so on. Visualization Cryptographic algorithms one of the protected methods of transferring pictures online. The main benefit of image encryption has been that it disguises peripheral vision with encrypt data secret data with no computation usually needed. In this work a hybrid visual cryptography method using a sigmoid function (HVMSF) for enhancing the security in gray images. HVMSF strategy utilizes a chaos framework to scramble pixel values as well as blocks while using the Modified Arnold Cat Map method (MACM) as well as the Henon Map method (HMM). The methodology includes a
confusion procedure wherein the location of each image pixel is shuffled by utilizing MACM. The shuffling of image pixel leads to the creation of a subset pixel which will be protected for transmitting. This proposed HVMSF mainly tries to overcome the limitation of the previous approaches by applying sigmoid function in image feature space for contrast enhancement throughout the consequent source images. The experimental outcomes precisely show that the suggested strategy can further give additional effectiveness to ensure the protection of transmitting information out over previous techniques.

Keywords: Visual Cryptography, Modified Arnold Cat Map (MACM), Henon Map (HM), hybrid visual cryptography method using a sigmoid function (HVMSF)

References:

Author(s): Jaya Kumari, Kailash Patidar, Gourav Saxena, Rishi Kushwaha

Title of the Article: A Hybrid Enhanced Real-Time Face Recognition Model using Machine Learning Method with Dimension Reduction

Abstract: Face recognition techniques play a crucial role in numerous disciplines of data security, verification, and authentication. The face recognition algorithm selects a face attribute from an image dataset. Recognize identification is an authentication device for verification as well as having both data analysis and feasible significance. The face-recognition centered authentication framework can further be considered an AI technology implementation for instantly identifying a particular image. In this research, we are presenting a hybrid face recognition model (HFRM) using machine learning methods with “Speed Up Robust Features” (SURF), “scale-invariant feature transform” (SIFT), Locality Preserving Projections (LPP) & Principal component analysis (PCA) method. In the proposed HFRM model SURF method mainly detects the local feature efficiently. SIFT method mainly utilizes to detect the local features and recognize them. LPP retains the local framework of facial feature area which is generally quite meaningful than on the sequence kept by a principal component analysis (PCA) as well as “linear discriminative analysis” (LDA). The proposed HFRM method is compared with the existing (H. Zaaraoui et al., 2020) method and the experimental result clearly shows the outstanding performance in terms of detection rate and accuracy % over existing methods.

Keywords: Speed up Robust Features, Hybrid Face Recognition Model, Linear Discriminate Analysis, PCA, LPP

References:

Author(s): M.S.Antony Vigil, Rishabh Jain, Abhinav Chandra, Tanmay Agarwal

Title of the Article: A Novel Data-Driven Optimal Methodology for Detecting Ship from Sar Images Based on Artificial Intelligence

Abstract: There are a variety of deep learning algorithms available in the supervision of ships, but they are dealing with multiple issues of inaccurate identification rate and inadequate target detection speed. At this stage, an algorithm is given on Convolutional Neural Network for target identification and detection using the ship image. The study involves the investigation of the reactions of hyper spectral atmospheric rectification on the accurate and precise results of ship detection. The ship features which were detected from two atmospheric rectified algorithms on airborne hyper spectral data were corrected by the application of these algorithms with the help of an unsupervised target detection procedure. High accuracy and fast ship identification was a result of this algorithm and using unique modules, improving the loss function and enlargement of data for the smaller targets. The results of the experiments show that our algorithm has given much better detection rate as compared to target detection algorithm using traditional machine learning.

Keywords: The Study Involves The Investigation Of The Reactions Of Hyper Spectral Atmospheric Rectification On The Accurate And Precise Results Of Ship Detection.

References:

Author(s): Judy Flavia, Aviraj Patel, Diwakar Kumar Jha, Navnit Kumar Jha

Title of the Article: A Wearable Brain-Computer Interface Instrument with Augmented Reality-Based Interface for General Applications

Abstract: In the project we are demonstrating the combined usage Augmented Reality(AR) and brain faced computer interface(BI) which can be used to control the robotic acurator by. This method is more simple and more user friendly. Here brainwave sensor will work in its normal setting detecting alpha, beta, and gamma signals. These signals are decoded to detect eye movements. These are very limited on its own since the number of combinations possible to make higher and more complex task possible. As a solution to this AR is integrated with the BCI application to make control interface more user friendly. This application can be used in many cases including many robotic and device controlling cases. Here we use BCI-AR to detect eye paralysis that can be archived by detecting eye lid movement of person by wearing headband.

Keywords: These Signals Are Decoded To Detect Eye Movements.

References:
12. M. Ahn and S. C. Jun, “Performance variation in motor imagery brain-