
Indian Journal of Artificial Intelligence and Neural Networking (IJAINN) 
ISSN: 2582-7626 (Online), Volume-2 Issue-4, June 2022 

6 

Retrieval Number: 100.1/ijainn.D1054062422 
DOI:10.54105/ijainn.D1054.062422 
Journal Website: www.ijainn.latticescipub.com 
 

Published By: 
Lattice Science Publication (LSP)  
© Copyright: All rights reserved. 
 

 

Abstract: Secret messages can be concealed in ordinary media 
like audio, video and images. This is called as Steganography. 
Steganography is used by cyber attackers to send malicious 
content that could harm victims. Digital steganography, or 
steganography in photographs, is exceedingly difficult to detect.  
The detection of steganography in images, has been investigated 
in thoroughly by a variety of parties. The use of steganographic 
techniques to send more malware to a compromised host in order 
to undertake different post-exploitation operations that affect the 
exploited system. Many steganalysis algorithms, on the other 
hand, are limited to working with a subset of all potential photos 
in the wild or have a high false positive rate. As a result, barring 
any suspected image becomes an arbitrary policy. Filtering 
questionable photos before they are received by the host machine 
is a more practical policy. In this paper, a Generative Adversarial 
Network based model is proposed that may be optimized to delete 
steganographic content while maintaining the original image's 
perceptual quality. For removing steganography from photos 
while keeping the maximum visual image quality, a model is built 
utilizing a combination of Generative Adversarial Network (GAN) 
and Image Processing. In the future, utilizing a generator to 
synthesize a picture will become more popular, and detection of 
steganography in images will become very difficult. In 
comparison to other models that have been addressed further, the 
proposed model is able to give a mean square error of 5.4204 
between the generated image and the cover image, as well as better 
outcomes based on several metrics. As a result, a GAN-based 
steganography eradication method will aid in this endeavor. 

Keywords: Removal of steganography, steganalysis, Generative 
Adversarial Network, Neural Network, Deep Learning 

I. INTRODUCTION 

Steganography is described as the use of various 

algorithms or approaches to hide data within an entirely 
separate collection of data (such as photos) so that only the 
source entity and destination entity are aware of the hidden 
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content during file transfer [1]. The content to be hidden by 
steganography is frequently encrypted before embedding it 
into the data. If the hidden data is not encrypted, it is usually 
treated in some way to make it more difficult to find it. 
However, hackers use this technique for malpractices like 
sending malware hidden in images which get activated by the 
victim unknowing when they open the image. Steganography 
has attracted various organizations due to the secrecy 
involved and the achievement of the goals along with it [4]. 
After contents have been embedded into another data using 
steganography, various methods are also used to detect the 
steganographic content present which is basically termed as 
steganalysis. If there is any unwanted steganographic content, 
that content has to be destroyed which is possible by different 
methods which are used for destruction of steganographic 
content [14]. Steganographic image is the output image after 
adding hidden information in an original image or cover 
image using steganography. The remainder of the paper is laid 
out as follows. The prior work in picture steganography and 
GAN will be discussed in Section II. In Section III, the dataset 
used to train the model will be presented, followed by 
Methodology in Section IV. Section V will contain the 
experimental outcomes. In Section VI, the conclusion and 
future work will be given. 

II.  BACKGROUND 

Various methods or techniques have been studied and 
implemented to attack steganographic systems. These 
approaches have either fully removed the steganographic 
content from the image or minimally changed the 
steganographic content, rendering it unusable while 
maintaining the image's quality. Machine learning [9] and 
non-machine [4] learning techniques are among the various 
steganography eradication strategies.  
Various digital filters and wavelet transforms are used in 
some of the non-machine learning techniques.[4] Overwriting 
method is a method in which the least significant bit of the 
image pixel is changed. Denoising approach is a method in 
which the corrupted pixel is selected and is replaced with a 
predicted value which removes the steganographic content. 
Denoising approach is of two types: filtering technique and 
discrete wavelet technique. These techniques are simple to 
use and do not require training on a dataset like their machine 
learning counterparts. However, they do not erase the artifacts 
and patterns left by steganographic algorithms. These 
strategies try to filter out content with a high frequency, 
resulting in image quality reduction due to a lower focus 
placed on perceptual quality. [4] The Pixel Steganalysis 
approach, which is based on an architecture called Pixel 
CNN++ [22], is a machine learning technique.  
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In this procedure, pixel and edge distributions are created for 
the image, which are then deleted from the suspected image.  
This method has been compared to three steganographic 
algorithms: Deep Neural Network (DNN)[24] based 
algorithm, which is a technique in which artificial intelligence 
(AI) i.e. neural networks is used to embed steganographic 
content, Invisible Steganography GAN(ISGAN)[23], which 
is a novel CNN architecture named that conceals a secret grey 
image into a color cover image, and Least Significant 

Bit(LSB) algorithm, which is a technique in which least 
significant bit of the image is replaced with data bit. GANs for 
removing steganographic material while keeping excellent 
visual quality are based on GANs for single image super 
resolution (SISR). The GAN framework was used in Ledig et 
al s research [20] to optimize a ResNet to raise the resolution 
of low-resolution photos to make them as aesthetically 
comparable to their high-resolution counterparts as feasible. 

 
Fig. 2a: Generator Architecture 

 
Additionally, using the GAN framework rather than a 
pixel-wise distance loss function, such as mean squared error 
(MSE), resulted in more high frequency texture detail being 
restored, according to their research. 

III. DATA 

For the project, we have taken the BossBASE dataset [21]. 
The BossBASE dataset contains 10000 grayscale images of 
size 256x256. These 10000 images are divided into 5 groups 
of 2000 images each. On this dataset, three different 
Steganographic algorithms named SUniward[26], Hugo[25] 
and WOW[27]. The three steganographic contents are then 
applied on the divided dataset with different embedding rates 
of 10%, 20%, 30%, 40% and 50% applied on each group of 
2000 images. Here 10% is the easiest to crack and 50% is the 
most difficult to crack. The final dataset contains about 30000 
images containing steganography and 10000 images without 
steganography. 

 

 
Fig. 1: Dataset Structure 

IV. METHODOLOGY 

A. Model 

For picture to image translation between the Stego Image and 
the Cover Image, a model based on generative adversarial 
networks is proposed. The model design is similar to that of 
the models used in SRGAN [20], but with fewer parameters. 

SRGAN is a super resolution GAN that is used to expand 
images. 
SRGAN is a single picture super-resolution generative 
adversarial network. There are two pieces to it: a generator 
and a discriminator. The generator generates data using a 
probability distribution, and the discriminator attempts to 
determine whether the data comes from the dataset or the 
generator. The goal of the SRGAN architecture is to recover 
finer features from an image when it is upscaled, ensuring that 
the image's quality is not compromised. 

B. Generator Architecture 

The generator takes in a 256 x 256 grey scale image as an 
input and produces a 256 x 256 grey scale image as an output. 
The input image is first passed through a minmax 
Normalization layer that scales the input image between 0 and 
1.Then it is passed through a series of convolutional, Relu, 
Batch normalization layer and then it is passed through 16 
residual block after which the image gets downsized by a 
factor of 2 so we have a 128 x 128 output which we then up 
sample by a factor of 2 to get to the original dimension which 
is then passed to the tanh activation layer which scales the 
output between -1 and 1.Finally the tanh denormalization 
layer which is then scaled to 0 and 255 for the output image 

 

Fig. 2b: Residual Block Architecture used in fig 2a 
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C. Discriminator Architecture 

The discriminator accepts a 256 x 256 grayscale image as 
input and returns a single value between 0 and 1, indicating 
whether the image is authentic or bogus.  
The term "genuine picture" refers to an image that is part of a 
series of cover images, while "fake image" refers to an image 
that is part of a group of generated images. The input image is 
initially scaled between -1 and 1 using a max. abs. 
normalisation layer. After that, a sequence of Convolutional, 
Batch Normalization, and Relu Layers are applied. There are 
seven different sorts of blocks, each with a different number 

of filters and strides, before being flattened and connected to a 
dense layer, then a sigmoid layer for output between 0 and 1. 

 

Fig. 3b: Discriminator Block Architecture used in fig 3a 
 

 

Fig. 3a: Discriminator Architecture 

V. TRAINING 

First pretrain the generator on the mean square error between 
the input image and the output image; this is done so that the 
generator converges quickly while adversarial training. After 
pre- training the generator Start the adversarial training. In 
this take stego image (S) and the corresponding cover image 
(C) then pass the Stego Image(S) in the generator (Gen), and 
then pass the output of Generator Gen(S) and C to the 
discriminator (Disc) which tries to distinguish between them. 
For the generator, the ADAM optimizer is employed with a 
learning rate of  =10-3  1=0.5 and  2=0.9. The loss function 
for generator is as follows 

G = Gen(S)                                                                        (1) 

Where G is the purified Image that is generated from the 
generator by passing stego Image (S) 

DG = Disc(G)                                                                     (2) 

Where DG is the discriminator output for Generated 
Images(G) 

Dc = Disc(C)                                                                     (3) 

Where Dc is the discriminator output for Cover Images (C)  

Gen_Loss = MSE (C, G) + BCE (1, DG)                        (4) 

Gen_loss is calculated as the sum of mean square error 
between the cover images(C) and generated images (G) and 
the Binary Cross Entropy between 1 and Discriminator output 
for generated images 

Disc_Loss = BCE (0, DG) + BCE (1, DC)                         (5) 

Disc_loss is calculated as the sum of Binary Cross Entropy 
between 0 and Discriminator output for generated images and 
the Binary Cross Entropy between 1 and Discriminator output 
for cover images As the adversarial training continues the 

generator becomes more and more efficient in removing the 
stego content and discriminator becomes more and more 
accurate in distinguishing between the generated/purified 
image and the original cover image. 

VI. RESULT 

To compare the results of our model we have calculated over 
5000 images and to compare the quality between the 
generated image and the corresponding cover image. Mean 
Square Error (MSE) is used, Structural Similarity Index 
(SSIM), Spectral Angle Mapper (SAM), Universal Quality 
Index (UQI), Peak Signal to Noise Ratio (PSNR), Visual 
Information Fidelity (VIFP). Different models have been 
compared like Auto Encoder, Bilinear Interpolation, 
Lanczos3, Bicubic Interpolation, Gaussian, Nearest Neighbor 
Interpolation. It can be observed that the proposed model 
provides good results for the different metrics used. 

 

Fig.6:  A:cover images, B:generated images, 
C:autoencoder images, D:bilinear images, E:lanczos3 

images, F:bicubic images, G:gaussian images, H:nearest 
neighbor images 
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Table 1:  Comparison of various model 

Model MSE SSIM PSNR UQI SAM VIFP 
Proposed 
Model 

5.4204 0.9897 43.294 0.9895 0.0265 0.8553 

Auto 
Encoder 

34.1621 0.9435 34.529 0.0605 0.0691 0.6487 

Bilinear 
In.  

95.8807 0.8526 30.734 0.0804 0.1169 0.4660 

Lanczos
3 

74.3341 0.8806 31.246 0.9841 0.1022 0.5204 

Bicubic 
In. 

80.3011 0.8730 31.145 0.9832 0.1065 0.5045 

Gaussian 102.560 0.8432 30.409 0.9790 0.1211 0.4511 
NN In. 94.7576 0.8672 30.593 0.9814 0.1174 0.4566 

 

VII. CONCLUSION 

In this Paper, a Generative Adversarial Networks (GANs) and 
Image Processing based model for removing steganography It 
is proposed to create photos with the highest visual image 
quality possible. The proposed model is able to provide a 
mean square error of 5.4204 between the generated image and 
cover image and better results based on different metrics as 
compared to other models which have been discussed. 
Although there are many different methods to remove 
steganography from an image, most of them are incapable of 
removing advanced steganography techniques Synthetic 
images can now be created easily using technologies like 
GAN with which steganography can be added without 
distorting much content of the image so traditional 
steganalysis method may not work in all cases therefore using 
a Neural Network model to filter images can provide a general 
method for removing steganography from images. 
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