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  Abstract: This paper deals with effect of digital noise to 

numerical stability of neural networks. Digital noise arises from 

the inexactness of floating point values operations. Accumulated 

errors finally lead to the loss of significance. Experiments show 

that more redundant networks have higher noise influence. This 

effect is tested in both model and real world samples. As a result, 

one should exclude all the networks results from the beginning of 

fluctuations. Results of experiments allow us to hypothesize that 

minimal values of loss function preserving significance were 

achieved for the networks of size close to the complexity of the 

dataset. So, it is a reason to choose sizes of network layers in 

accordance with complexity of particular datasets and not 

universally for an architecture and general problem statement 

without relation to data. In the case of fine tuning this suggests 

that pruning of network layers can improve result accuracy and 

reliability of prediction due to decrease of numerical noise 

influence. Results of this article are based on analysis of 

numerical experiments with train of more than 50000 neural 

networks for thousands epochs for each network. Almost all the 

networks begin to fluctuate. 

Keywords: Neural Network, Numerical Stability, Digital Noise, 

Digital Fluctuations, Fine-Tuning. 

I. INTRODUCTION 

In modern industry, artificial neural networks are widely 

applied. This is explained by their great performance in a 

wide area of applications. Moreover, a highly developed 

theoretical base shows that the mathematical model of 

neural network can express and approximate wide class of 

functions. Theoretical results begin with the famous result of 

Arnold [1] disproving 13th Hilbert problem. It assumes that 

there exists a continuous function of some number of 

variable that is indecomposable into the composition of 

functions in smaller number of variables. It turned out that 

any continuous function on n-dimensional compact set can 

be constructively expressed by superposition of 𝑛(2𝑛 + 1) 

functions of one variable and addition function  𝑎(x, y) =
𝑥 + 𝑦(see [10]). Actually, the form of this representation 

looks like a general form of function represented by a neural 

network with one hidden layer and different activations. 

For general activation function, there are some well 

known results on approximations: Cybenko theorem on 

 

 
Manuscript received on 18 November 2022 | Revised 

Manuscript received on 25 November 2022 | Manuscript 

Accepted on 15 December 2022 | Manuscript published on 30 

December 2022.  
* Correspondence Author (s) 

Igor V. Netay*, JSRPC Kryptonite and Intitute for Information 
Transmission Problems of Russian Academy of Sciences, Moscow, Russia. 

Email: i.netay@kryptonite.ru 

 
© The Authors. Published by Lattice Science Publication (LSP). This is an 

open access article under the CC-BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/) 

 

approximation of functions by wide one-layer neural 

network [3, 4, 6] and the dual theorem on approximation by 

deep narrow networks [9]. 

Reduced accuracy of neural networks with long training 

is related to big accumulated errors such as rounding errors. 

Vanishing or exploding gradients are the simplest well 

known consequence of such error accumulation. 

One of ways to solve this problem is data normalization. 

More recent theoretical results are more focused on negative 

results of approximations. In [20] the lower bounds of 

number of epochs with a given tolerance were found. In [11] 

necessary and sufficient numbers of neurons to approximate 

a function with given tolerance were found. Also, attacks for 

neural networks become very popular research topic. 

One can see that networks with bigger and bigger number 

of training parameters appear. If one have an ML problem, 

the usual decision is to utilize some network pretrained on 

some huge dataset and fine tune it on own dataset. The 

growth can be explained by expression of problems for 

neural networks to solve in terms of natural language and 

therefore having no finite exact form by its sense. Sizes of 

some well known networks are listed in Table I. 

Table-I: Some examples of well known important 

neural networks 

Network year Parameters 

LeNet-5 [13, 14, 15, 25] 1998 48120 

Google Net [21] 2014 ≈7000000 

Alex Net [12] 2014 ≈61000000 

Inception v3 [22] 2015 ≈24000000 

Resnet-152 [7] 2015 ≈60000000 

VGG-19 [18] 2015 ≈144000000 

GPT-3 [2] 2020 ≈185000000 

 

Usually, neural networks are trained with 32-bit floating 

point values. In the same time, 16-bit floating point values 

are used for optimization. There are also 8-bit tensor 

processors for neural networks for edge computations. Each 

step of quantization leading to decrease of precision 

obviously decreases the result significance. However, one 

usually checks the quality of network prediction in these 

cases by checking the target quality metric without any 

check of significance. Loss of significance is explained by 

the fact that float numbers are representations of some 

subset of real numbers, but not real numbers themselves. 

The standard for this representation is known as IEEE 754. 

Also, this standard describes how operations with numbers 

are performed. All the operations have some inaccuracies, 

but the biggest one is in the case of the subtraction of 

numbers close to each other. 
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 Comparison of values can also introduce errors, because 

it is implemented through the subtraction. Classification of 

operations with numbers used in optimizers in torch library 

(one of most popular libraries for neural networks) is listed 

in Table II. 

Table-II: Numeric operations in torch library. 

 
Operation 

Optimizer 

NAdam others1 ASGD, Adamax SGD, Rprop 

±, ∗, > + + + + 

/ + + + - 

√• + + - - 

pow + - - - 
 

The goal of this work is to describe some macroscopic 

objects arising from accumulated numeric inaccuracies and 

pointing that the accumulated error is big enough. We call 

them digital fluctuations. Numerical experiments 

demonstrate relation between neural network sizes and 

accuracy of function approximations by these networks 

preserving significance. We look at the minimal loss value 

achieved by networks before significance gets lost. For 

synthetic datasets, we can define the complexity of labeled 

dataset as the size of network applied to label it. For general 

case some approaches may be found in [8]. It turns out that 

the minimal loss value is achieved by networks of size near 

to dataset complexity. 

II. RESULTS 

In this paper, influence of digital noise to neural networks 

behavior is studied. Numerical experiments show that 

numerical inaccuracies can lead to total loss of significance 

of network inference and make any results and quality 

metrics values meaningless. It is easy to detect digital 

fluctuations in network train process. Any results based on 

network predictions after fluctuations begin are just artifacts 

of digital noise and should not be interpreted and used to 

make any conclusions. This makes detection of fluctuation 

necessary to preserve prediction significance. Experiments 

with model datasets show that for given complexity of 

dataset there is an optimal choice of network size such that 

the network achieves the best accuracy without loss of 

significance. Results of experiments allows us to propose 

conjecture that optimal network size is close to dataset 

complexity.    Experiments with real world datasets and well 

known neural networks show that fluctuations arise not only 

in model networks. As a result, we conclude that network 

size should depend on train dataset. If the network is 

redundant relatively to dataset complexity, then its training 

process becomes less numerically stable and leads to earlier 

and higher fluctuations.    Another result is that start of 

digital fluctuations of loss function during training process 

marks the moment after which reliability of trained network 

become doubtful. 

III. RELATED WORK 

Evaluation of functions of inexact arguments leads to 

inexact values. The dependence of inexactness of the result 

on inexactness of arguments is expressed by the condition 

 
1All the others optimisers in torch, namely, Adadelta, Adagrad, Adam, 

AdamW, SparseAdam, LBFGS, RAdam, RMSprop. 

number. 

The weights learned by networks give maps between 

layers, which usually have high condition numbers (see 

[17]). Such maps are said to be ill conditioned. 

Respectively, one can assume that neural networks 

accumulate high numerical errors when training. Loss of 

exactness can be exploited as a vulnerability for attacks. 

Paper [19] hypothesizes that ill conditioned weight matrices 

in neural network are a factor towards adversarial success. 

In [16] some regularization improving conditioning is 

considered as a defense method. It is well known that wide 

enough network with one hidden layer can approximate any 

continuous function [5, 3]. Deep networks (having more 

than one hidden layer) are more vulnerable to attacks [23]. 

Therefore, it is simpler to use one layer networks to compare 

their accuracy. 

IV. THEORY 

A regression machine learning problem with numeric 

features includes the following data: 

•𝑋 ≃ ℝ𝑛—data space, 

•𝑌 ≃ ℝ𝑚—label space, 

•𝐴 = 𝐴(𝜃) = {𝐴(𝑥)=g(𝑥, 𝜃)|𝜃 ∈ 𝛩}is a map 𝑋 → 𝑌 

parameterized by 𝜃 (prediction model), where𝑔: 𝑋 × 𝛩 → 𝑌 

is a fixed function, 

•Θ is a set of admissible parameter 𝜃 values. 

Definition 3.1. A training method is a set of functions 

𝜇ℓ: (𝑋 × 𝑌)ℓ → 𝛩 

forℓ ∈ ℕ which puts a parameter 𝜃 = 𝜇(𝐷ℓ) into 

correspondence with a data sample 𝐷ℓ = {(𝑥𝑖 , 𝑦𝑖)}i=1
ℓ  for 

model 𝐴(𝜃). 

Definition 3.2. A loss function 𝐿(A,(𝑥, 𝑦)) for a model 𝐴 

on data-label pair (𝑥, 𝑦) is a function 𝐿: 𝑋 → 𝑌 × 𝐷ℓ → ℝ. 

Given a labeled dataset 𝐷ℓ = {(𝑥𝑖 , 𝑦𝑖)}i=1
ℓ , we call the 

empirical risk or a loss function on the dataset 𝐷ℓ the value 

𝑄(𝐴, 𝐷ℓ): =
1

ℓ
∑ 𝑞

ℓ

i=1

(𝐴(𝑥𝑖), y𝑖) 

Therefore, the problem of machine learning is reduced to 

minimization of empirical risk. 

Usually, the loss function is defined by an expression of 

form 

𝐿(A,(x, y)) = 𝑞(𝐴(𝑥), y) 

𝑄(A,{(𝑥𝑖 , y𝑖)}i=1
ℓ ) =

1

ℓ
∑ 𝑞ℓ

i=1 (𝐴(𝑥𝑖), y𝑖), 

whereq is some similarity measure on labels, for instance, a 

distance function on the space Y . 

Loss function MSE (mean square error) is defined 

by 𝑞(𝑦, 𝑦) = ||𝑦 − 𝑦||2. 

Cross-entropy function is defined by a non-symmetric 

function 𝑞(𝑦, 𝑦) = − ∑ 𝑦𝑗
𝑚
j=1 ⋅ log2𝑦𝑗̂, where 𝑦 =

(𝑦1, … , 𝑦𝑚). 

Usually, the set of parameters 𝛩 is a real vector space ℝ𝑝, 

where 𝑝 is the number of free parameters (also called the 

number of trainable parameters) of the model.  
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The map 𝑔 is chosen to be differentiable in model 

parameters (maybe exact zero Lebesgue measure set). 

For such models the gradient descent algorithm is 

applicable. Given an initial parameter 𝜃0, we can define the 

next approximations as 

𝜃e+1 = 𝜃𝑒 − 𝛾𝛻𝐿(𝜃𝑒),                                                    (1) 

where the parameter 𝛾 > 0 is called learning rate. 

Neural networks are one of the most popular machine 

learning algorithms. There are many types and constructions 

of neural networks exist, but there is no general final 

definition of neural network. In this work, we restrict a 

notion of neural network 𝑁 by the following collection of 

data: 

1. 𝐺 = (𝑉, 𝐸)is a directed graph (oriented graph without 

oriented cycles), elements of 𝑉 are also called neurons, 

2. 𝐼 ⊆ 𝑉is the set of vertices without incoming edges, 

3. 𝑂 ⊆ 𝑉contains all vertices without outcoming edges, 

4. ({𝑤u,v}, {𝑏𝑣})are weights and biases (offsets) 𝑢, 𝑣 ∈ 𝑉, 

𝑣 ∉ 𝐼, (𝑢, 𝑣) ∈ 𝐸 (we write the symbol • for brevity and 

to avoid introduction of all indexes running over 

corresponding definition domains. In this case we will 

denote the collection of weights by (𝑤•,•, 𝑏•)), 

5. 𝑎𝑣: ℝ → ℝis an activation function for each neuron 𝑣 ∉
𝐼. 

We consider the generalization of the definition above by 

identification of parameters 𝑏• for some subsets of vertices. 

These subsets are called layers of neural network. 

Let us introduce some additional notation for further 

convenience. 

[1] Given a network 𝑁, we call the subcollection of data 

𝐴(𝑁) ≔ (𝐺, 𝑂, {𝑎𝑣}𝑣∈𝑉) the network’s architecture, 

[2] The collection of data 𝑊 ≔ ({𝑤•,•}, {𝑏•}) ∈

ℝ𝐸⊕ℝ𝑉=Θ is said to be the set of weights (or trainable 

parameters) of 𝑁, 

[3] The network 𝑁 is said to be a neural network of 

architecture 𝐴, initialized by weights 𝑊. 

Transfer function of neuron 𝑣 ∈ 𝑉 is a function 

  

where the sum is taken over all neurons 𝑢 with edges from 

them to 𝑣. 

Forward propagation 𝑓𝑝𝑁 of signal in the network 𝑁 is the 

injection ℝ𝐼 → ℝ𝑉 defined inductively by transfer functions 

of neurons 𝑣 ∈ 𝑉. 

Transfer function 𝑁* of the network𝑁 is the restriction of 

forward propagation on the subset of output 

neurons, i. e. 𝑁* = (𝑓𝑝)|𝑂 (see Fig. 1). 

Given some numeration of input and output neurons, we can 

identify 𝑋 ≃ ℝ𝐼 and 𝑌 ≃ ℝ𝑂: 

 

Scheme for definition of neural network transfer function. 

Usually, some variants of gradient descent method are used 

to train networks. Taking initial weights 𝜃0 in some random 

way, repeatedly applied gradient descent unfold initial state 

to the sequence of weights 𝜃𝑖, 𝑖 ∈ 𝑍⩾0. So, the training 

method of a neural network consists of some variant of 

gradient descent method and a stop-rule to break the 

sequence 𝜃• and take some its element. The simplest variant 

of gradient descent method is (1), but much more 

sophisticated variants are used in most cases. 

Explicit form of (1) was independently found by 

Galushkin and Werbos  in 1974 and was called the 

backpropagation. The transfer function 𝑁* is expressed as a 

superposition of neurons’ transfer functions as a function in 

inputs and weights as coordinates in 𝑊. Therefore, partial 

derivatives 
𝜕𝐿

𝜕𝑤•,•
 and 

𝜕𝐿

𝜕𝑏•
 at 𝐷1 = (x, y) can be expressed by a 

chain rule through 𝐿′, 𝑎•′ and coordinates of 𝑥 and 𝑦. 

Functions 𝐿 and 𝑎• are usually chosen to be differentiable in 

explicit form without numerical differentiation. 

Backpropagation takes the labeled dataset 𝐷ℓ to the vector 

field 𝛻𝑄(𝐴, 𝐷ℓ) over 𝛩. So, training of neural network is 

actually a dynamical system moving in 𝛩 along the vector 

field in opposite direction. 

Scheme of experiment for (𝑛, 𝑚) = (3,3).  

 

 

Figure 1: Scheme of labeled datasets construction for (n, 

m) = (3, 2) 

Usually, some variants of gradient descent method are used 

to train networks. Taking initial weights 𝜃0 in some random 

way, repeatedly applied gradient descent unfold initial state 

to the sequence of weights 𝜃𝑖, 𝑖 ∈ ℤ⩾0. So, the training 

method of a neural network consists of some variant of 

gradient descent method and a stop-rule to break the 

sequence 𝜃• and take some its element. The simplest variant 

of gradient descent method is (1), but much more 

sophisticated variants are used in most cases. Explicit form 

of (1) was independently found by Galushkin [8] and 

Werbos [24] in 1974 and was called the backpropagation. 

The transfer function 𝑁 is expressed as a superposition of 

neurons’ transfer functions as a function in inputs and 

weights as coordinates in 𝑊. Therefore, partial 

derivatives 
𝜕𝐿

𝜕𝑤•,•
 and 

𝜕𝐿

𝜕𝑏•
 at 𝐷1 = (𝑥, 𝑦) can be expressed by 

a chain rule through 𝐿′, 𝑎•′ and coordinates of 𝑥 and 𝑦. 

Functions 𝐿 and 𝑎• are usually chosen to be differentiable in 

explicit form without numerical differentiation. 
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Backpropagation takes the labeled dataset 𝐷ℓ to the vector 

field 𝛻𝑄(𝐴, 𝐷ℓ) over 𝛩. So, training of neural network is 

actually a dynamical system moving in 𝛩 along the vector 

field in opposite direction. 

V. EXPERIMENTSETTING 

Definition 6.  A fully connected architecture with sizes of 

hidden layers ℎ1, … , ℎℓ and numbers of inputs and outputs 𝑛 

and 𝑚 is the graph, where vertices are union of 

subsets 𝑁, 𝐻1, … , 𝐻ℓ, 𝑀 of 𝑛, ℎ1, … , ℎℓ, 𝑚 elements 

correspondingly and edges are from each vertex of 𝑁 to 

each of 𝐻1, from each of 𝐻𝑗 to each of 𝐻j+1 for 𝑗 = 1, … , 𝑙 −

1, and from each of 𝐻ℓ to each of 𝑀, and there are no any 

other edges; the set of output vertices 𝑂 coincides with 𝑀. 

Let us denote this architecture by 𝐴(𝑛, ℎ1, … , ℎℓ, 𝑚). In the 

case of unique hidden layer we will use the letter ℎ without 

any index. 

A fully connected neural network is a network of fully 

connected architecture. 

We will draw fully connected neural networks as graphs 

where layers are placed vertically and the signal propagation 

is directed to the right. 

We will denote a network of architecture 𝐴(𝑛, ℎ, 𝑚) 

initialized with weights of some random distribution 

by 𝑅(𝑛, ℎ, 𝑚). 

For research of digital noise, we perform series of 

experiments. In these experiments a series of neural 

networks of increasing sizes are trained on the same dataset. 

Also, we perform series of experiments on real datasets. 

Model datasets are points in a lattice inside the 

cube [−1, 1]𝑛 ⊂ 𝑋. Namely, in coordinate segment [−1,1] 
is subdivided by this lattice into 2000 equal parts, so dataset 

consists of 2001𝑛 points. Hereafter we label this dataset by 

pointwise application of some function 𝑓, and obtain a 

dataset of form 𝐷ℓ = {𝑥𝑖 , 𝑦𝑖 = 𝑓(𝑥𝑖)}i=1
ℓ . We choose a 

function 𝑓 equal to 𝑅(𝑛, ℎ, 𝑚). 

Figure 3: Scheme for definition of neural network 

transfer function 

The function 𝑓 is the transfer function of neural 

network 𝑅(𝑛, ℎ, 𝑚). An equivalent way to express such 

function is to take an expression of form 

𝑓•(𝑥) = ∑•

𝑛

⋅ 𝑎 (∑•

ℎ

j=1

⋅ 𝑥𝑗 +•) +•, 

where • denotes each time a new real random coefficient. In 

particular, for activation ReLU and 𝑛 = 1, in general case 

we obtain a piecewise linear function with ℎ discontinuities 

of derivative. Scheme of labeled dataset construction is 

drawn on Fig. 2. 

So, each dataset consists of 2001𝑑 entries and is a table of 

form 2001𝑛 × (𝑛 + 𝑚). 

We apply this procedure for the collection of neural 

networks 𝑅(𝑛, ℎ, 𝑚), ℎ ∈ {1,2, … , ℎ∘} for some ℎ∘ (here 

ℎ∘ = 100). Note that by the construction for any collection 

of networks with the same 𝑛 the blocks of the first 𝑛 

columns (the block 𝑋 on Fig. 2) coincide. 

For each labeled dataset 𝐷, we perform the following 

experiment: 

[1] construct a collection of neural networks 𝑁(𝑛, ℎ, 𝑚) 

for ℎ′ = 1, … , (ℎ′)∘ (we put (ℎ′)∘ = 100), 

[2] the networks are initialized by default way, 

[3] we choose some common parameters for the network 

optimizer (we choose the Adam optimizer with learning 

rate 0.001), 

[4] all the networks are trained on this dataset during the 

same number of epochs (for (𝑛, 𝑚) =
(1,1), (1,2), (1,3) it equals 10000, for (2,1) — 2000, 

for (2,2) — 1000), 

[5] as a result, we obtain the collections of weights 𝑊•,•,•
•  

and loss function values 𝜆•,•,•
• , 

[6] we analyze the sequences {𝜆𝑛,ℎ,𝑚
𝑒 }

𝑒=1

𝐸𝑛,ℎ,𝑚
. 

The scheme of experiment is illustrated on Fig. . 

 

Figure 4: Fluctuations for dimensions (n, m) = (1, 2) and 

dataset complexity h=10 

VI. EXPERIMENT RESULTS 

A. Modelexperiments 

One can see examples of loss functions for networks of 

different sizes trained on the same labeled dataset on Fig. . 

Each illustration contains graphics of these loss functions 

drawn with different color. It is easy to see that the lowest 

values decrease as ℎ increases, but the beginning of the first 

fluctuation moves to the left, and the amplitude grows. 

 

Figure 5: Scheme of experiment for (n, m) = (3, 3) 
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Figure 6: Fluctuations for networks with input and 

output dimensions (n, m) = (1, 1) trained on dataset of 

complexity h=10. 

Figure 7: Fluctuations for dimensions (n, m) = (1, 3) and 

dataset complexity h=10 

Figure 8: Fluctuations for dimensions (n, m) = (2, 1) and 

dataset complexity h=15 

Figure 9: Fluctuations for dimensions (n, m) = (2, 2) and 

dataset complexity h=15. 

To improve visibility of typical behavior of best achieved 

loss function value, we smoothen the graph (see Fig. ). 

 

Figure 10: Loss function logarithm for train of LeNet-5 

on MNIST with Adam optimizer, lr=0.001, black line for 

train loss and red line for test loss. 

On Fig.  one can see the initial part of graph for set of such 

smoothened curves for (𝑛, 𝑚) = (1,2). 

Figure 11: Smoothened behavior of logarithm of loss 

function depending on h arranged from 1 to 100 with 

parameters (n, m) = (1, 1), h=22; the vertical line 

corresponds to h=22. 

So, the view of smoothened distribution (to decrease the 

noise) of logarithms of minimal loss function as a function 

of the network size suggests that there should be on optimal 

choice of network size for training on this dataset. 

Training of the model neural networks was performed for a 

month on one GPU NVidia Quadro P5000. 

B. Experimentsonrealdatasets 

Figure 12: Sequence of smoothened curves of logarithms 

of lowest loss function values before fluctuations in 

dependence of network size. Dataset complexity 

corresponds to vertical line of the same color. Here (n, 

m) = (1, 2) 
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Here we check that the digital fluctuations appear with 

network Lenet5 on the dataset MNIST. For this network we 

have tested about ten standard optimizers, and the 

fluctuations have appeared in all the cases. For the optimizer 

Adam and SGD (seeming to be most popular) one can see 

the fluctuations on Fig. , Fig.  

Figure 13: Loss function logarithm for train with SGD 

optimizer, lr=0.9. 

Fluctuations for real world examples show that they are not 

an effect of experiments model. 

VII. APPLICATIONTOFINETUNING 

Suppose we have a neural network trained to solve problem 

on some big dataset. We want to fine tune it on our smaller 

dataset. Then we can fine tune all the network or some of its 

layers (usually, a subset of some last layers) on our dataset. 

Then it would be a good idea to shrink layers to the sizes 

corresponding to complexity of our dataset. This means that 

replacement of layers to smaller ones may improve numeric 

stability and convergence, and finally to improve the 

resulting performance. For a few layers they can be tuned 

separately. If we apply the initial network to simpler dataset, 

than the dataset it was trained on, then the fine-tuning may 

converge better on smaller layer sizes, because the network 

may converge worse due to presence of layers redundant 

with respect to our dataset. So, redundancy of a network or 

its layer size is not absolute, but depends on the dataset. 

VIII. CONCLUSION 

We have researched the fluctuations arising at network 

training. It turns out that they appear almost everywhere. 

Digital fluctuations lead to growth of loss function by a few 

order of value and to loss of significance. It implies that 

training should be stopped, when fluctuations begin. So, 

observation of fluctuations can help to stop the training, 

when it loses sense. Moreover, we should observe them to 

avoid subsequent interpretation of meaningless inference 

values. We have compared minimal achieved loss function 

values for series of neural networks of different sizes for the 

same dataset of known complexity and repeated it for 

different complexities. It turns out that in these sequences 

the minimal loss function values decrease at the beginning 

and then begin to oscillate and finally increase. This implies 

that we cannot infinitely increase network accuracy with 

choosing bigger networks and/or longer training process. 

Conversely, there is some best choice for network size. In 

many cases the best accuracy is achieved by networks of 

sizes close to the dataset complexity.  

This suggests that there are some estimation of size of 

network achieving the best quality, and this estimation is 

close to the dataset complexity. For large complexities, we 

can see in experiment that the estimation of best 

approximating network size does not increase linearly as 

dataset complexity increases. This can be explained by the 

fact that very close placement of the learning function 

breakpoints sometimes can approximate the function by 

network of lower size than function complexity. We can see 

that for long enough training the fluctuations begin almost 

everywhere. So, in case of numerical instability of fine 

tuning on smaller datasets, it is reasonable to decrease layer 

sizes to achieve better performance and preserve significant 

digits in result. Although a bigger network can express any 

function that can be expressed by smaller networks, 

experiments show that this does not happen in practice, and 

redundant networks usually confuses itself by accumulating 

digital noise. This digital noise accumulates and in some 

time gets bigger than the meaningful part of result and 

makes network inference useless. 
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