
Indian Journal of Artificial Intelligence and Neural Networking (IJAINN)

ISSN: 2582-7626 (Online), Volume-3 Issue-1, December 2022

1

Retrieval Number: 100.1/ijainn.A1061123122

DOI:10.54105/ijainn.A1061.123122

Journal Website: www.ijainn.latticescipub.com

Published By:

Lattice Science Publication (LSP)

© Copyright: All rights reserved.

Influence of Digital Fluctuations on Behavior of

Neural Networks

Igor V. Netay

 Abstract: This paper deals with effect of digital noise to

numerical stability of neural networks. Digital noise arises from

the inexactness of floating point values operations. Accumulated

errors finally lead to the loss of significance. Experiments show

that more redundant networks have higher noise influence. This

effect is tested in both model and real world samples. As a result,

one should exclude all the networks results from the beginning of

fluctuations. Results of experiments allow us to hypothesize that

minimal values of loss function preserving significance were

achieved for the networks of size close to the complexity of the

dataset. So, it is a reason to choose sizes of network layers in

accordance with complexity of particular datasets and not

universally for an architecture and general problem statement

without relation to data. In the case of fine tuning this suggests

that pruning of network layers can improve result accuracy and

reliability of prediction due to decrease of numerical noise

influence. Results of this article are based on analysis of

numerical experiments with train of more than 50000 neural

networks for thousands epochs for each network. Almost all the

networks begin to fluctuate.

Keywords: Neural Network, Numerical Stability, Digital Noise,

Digital Fluctuations, Fine-Tuning.

I. INTRODUCTION

In modern industry, artificial neural networks are widely

applied. This is explained by their great performance in a

wide area of applications. Moreover, a highly developed

theoretical base shows that the mathematical model of

neural network can express and approximate wide class of

functions. Theoretical results begin with the famous result of

Arnold [1] disproving 13th Hilbert problem. It assumes that

there exists a continuous function of some number of

variable that is indecomposable into the composition of

functions in smaller number of variables. It turned out that

any continuous function on n-dimensional compact set can

be constructively expressed by superposition of 𝑛(2𝑛 + 1)

functions of one variable and addition function 𝑎(x, y) =
𝑥 + 𝑦(see [10]). Actually, the form of this representation

looks like a general form of function represented by a neural

network with one hidden layer and different activations.

For general activation function, there are some well

known results on approximations: Cybenko theorem on

Manuscript received on 18 November 2022 | Revised

Manuscript received on 25 November 2022 | Manuscript

Accepted on 15 December 2022 | Manuscript published on 30

December 2022.
* Correspondence Author (s)

Igor V. Netay*, JSRPC Kryptonite and Intitute for Information
Transmission Problems of Russian Academy of Sciences, Moscow, Russia.

Email: i.netay@kryptonite.ru

© The Authors. Published by Lattice Science Publication (LSP). This is an

open access article under the CC-BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

approximation of functions by wide one-layer neural

network [3, 4, 6] and the dual theorem on approximation by

deep narrow networks [9].

Reduced accuracy of neural networks with long training

is related to big accumulated errors such as rounding errors.

Vanishing or exploding gradients are the simplest well

known consequence of such error accumulation.

One of ways to solve this problem is data normalization.

More recent theoretical results are more focused on negative

results of approximations. In [20] the lower bounds of

number of epochs with a given tolerance were found. In [11]

necessary and sufficient numbers of neurons to approximate

a function with given tolerance were found. Also, attacks for

neural networks become very popular research topic.

One can see that networks with bigger and bigger number

of training parameters appear. If one have an ML problem,

the usual decision is to utilize some network pretrained on

some huge dataset and fine tune it on own dataset. The

growth can be explained by expression of problems for

neural networks to solve in terms of natural language and

therefore having no finite exact form by its sense. Sizes of

some well known networks are listed in Table I.

Table-I: Some examples of well known important

neural networks

Network year Parameters

LeNet-5 [13, 14, 15, 25] 1998 48120

Google Net [21] 2014 ≈7000000

Alex Net [12] 2014 ≈61000000

Inception v3 [22] 2015 ≈24000000

Resnet-152 [7] 2015 ≈60000000

VGG-19 [18] 2015 ≈144000000

GPT-3 [2] 2020 ≈185000000

Usually, neural networks are trained with 32-bit floating

point values. In the same time, 16-bit floating point values

are used for optimization. There are also 8-bit tensor

processors for neural networks for edge computations. Each

step of quantization leading to decrease of precision

obviously decreases the result significance. However, one

usually checks the quality of network prediction in these

cases by checking the target quality metric without any

check of significance. Loss of significance is explained by

the fact that float numbers are representations of some

subset of real numbers, but not real numbers themselves.

The standard for this representation is known as IEEE 754.

Also, this standard describes how operations with numbers

are performed. All the operations have some inaccuracies,

but the biggest one is in the case of the subtraction of

numbers close to each other.

http://doi.org/10.54105/ijainn.A1061.123122
https://www.ijainn.latticescipub.com/
mailto:xyz1@blueeyesintlligence.org
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.54105/ijainn.A1061.123122&domain=www.ijainn.latticescipub.com

Influence of Digital Fluctuations on Behavior of Neural Networks

2

Retrieval Number: 100.1/ijainn.A1061123122

DOI:10.54105/ijainn.A1061.123122

Journal Website: www.ijainn.latticescipub.com

Published By:

Lattice Science Publication (LSP)

© Copyright: All rights reserved.

 Comparison of values can also introduce errors, because

it is implemented through the subtraction. Classification of

operations with numbers used in optimizers in torch library

(one of most popular libraries for neural networks) is listed

in Table II.

Table-II: Numeric operations in torch library.

Operation

Optimizer

NAdam others1 ASGD, Adamax SGD, Rprop

±, ∗, > + + + +

/ + + + -

√• + + - -

pow + - - -

The goal of this work is to describe some macroscopic

objects arising from accumulated numeric inaccuracies and

pointing that the accumulated error is big enough. We call

them digital fluctuations. Numerical experiments

demonstrate relation between neural network sizes and

accuracy of function approximations by these networks

preserving significance. We look at the minimal loss value

achieved by networks before significance gets lost. For

synthetic datasets, we can define the complexity of labeled

dataset as the size of network applied to label it. For general

case some approaches may be found in [8]. It turns out that

the minimal loss value is achieved by networks of size near

to dataset complexity.

II. RESULTS

In this paper, influence of digital noise to neural networks

behavior is studied. Numerical experiments show that

numerical inaccuracies can lead to total loss of significance

of network inference and make any results and quality

metrics values meaningless. It is easy to detect digital

fluctuations in network train process. Any results based on

network predictions after fluctuations begin are just artifacts

of digital noise and should not be interpreted and used to

make any conclusions. This makes detection of fluctuation

necessary to preserve prediction significance. Experiments

with model datasets show that for given complexity of

dataset there is an optimal choice of network size such that

the network achieves the best accuracy without loss of

significance. Results of experiments allows us to propose

conjecture that optimal network size is close to dataset

complexity. Experiments with real world datasets and well

known neural networks show that fluctuations arise not only

in model networks. As a result, we conclude that network

size should depend on train dataset. If the network is

redundant relatively to dataset complexity, then its training

process becomes less numerically stable and leads to earlier

and higher fluctuations. Another result is that start of

digital fluctuations of loss function during training process

marks the moment after which reliability of trained network

become doubtful.

III. RELATED WORK

Evaluation of functions of inexact arguments leads to

inexact values. The dependence of inexactness of the result

on inexactness of arguments is expressed by the condition

1All the others optimisers in torch, namely, Adadelta, Adagrad, Adam,

AdamW, SparseAdam, LBFGS, RAdam, RMSprop.

number.

The weights learned by networks give maps between

layers, which usually have high condition numbers (see

[17]). Such maps are said to be ill conditioned.

Respectively, one can assume that neural networks

accumulate high numerical errors when training. Loss of

exactness can be exploited as a vulnerability for attacks.

Paper [19] hypothesizes that ill conditioned weight matrices

in neural network are a factor towards adversarial success.

In [16] some regularization improving conditioning is

considered as a defense method. It is well known that wide

enough network with one hidden layer can approximate any

continuous function [5, 3]. Deep networks (having more

than one hidden layer) are more vulnerable to attacks [23].

Therefore, it is simpler to use one layer networks to compare

their accuracy.

IV. THEORY

A regression machine learning problem with numeric

features includes the following data:

•𝑋 ≃ ℝ𝑛—data space,

•𝑌 ≃ ℝ𝑚—label space,

•𝐴 = 𝐴(𝜃) = {𝐴(𝑥)=g(𝑥, 𝜃)|𝜃 ∈ 𝛩}is a map 𝑋 → 𝑌

parameterized by 𝜃 (prediction model), where𝑔: 𝑋 × 𝛩 → 𝑌

is a fixed function,

•Θ is a set of admissible parameter 𝜃 values.

Definition 3.1. A training method is a set of functions

𝜇ℓ: (𝑋 × 𝑌)ℓ → 𝛩

forℓ ∈ ℕ which puts a parameter 𝜃 = 𝜇(𝐷ℓ) into

correspondence with a data sample 𝐷ℓ = {(𝑥𝑖 , 𝑦𝑖)}i=1
ℓ for

model 𝐴(𝜃).

Definition 3.2. A loss function 𝐿(A,(𝑥, 𝑦)) for a model 𝐴

on data-label pair (𝑥, 𝑦) is a function 𝐿: 𝑋 → 𝑌 × 𝐷ℓ → ℝ.

Given a labeled dataset 𝐷ℓ = {(𝑥𝑖 , 𝑦𝑖)}i=1
ℓ , we call the

empirical risk or a loss function on the dataset 𝐷ℓ the value

𝑄(𝐴, 𝐷ℓ): =
1

ℓ
∑ 𝑞

ℓ

i=1

(𝐴(𝑥𝑖), y𝑖)

Therefore, the problem of machine learning is reduced to

minimization of empirical risk.

Usually, the loss function is defined by an expression of

form

𝐿(A,(x, y)) = 𝑞(𝐴(𝑥), y)

𝑄(A,{(𝑥𝑖 , y𝑖)}i=1
ℓ) =

1

ℓ
∑ 𝑞ℓ

i=1 (𝐴(𝑥𝑖), y𝑖),

whereq is some similarity measure on labels, for instance, a

distance function on the space Y .

Loss function MSE (mean square error) is defined

by 𝑞(𝑦, 𝑦) = ||𝑦 − 𝑦||2.

Cross-entropy function is defined by a non-symmetric

function 𝑞(𝑦, 𝑦) = − ∑ 𝑦𝑗
𝑚
j=1 ⋅ log2𝑦𝑗̂, where 𝑦 =

(𝑦1, … , 𝑦𝑚).

Usually, the set of parameters 𝛩 is a real vector space ℝ𝑝,

where 𝑝 is the number of free parameters (also called the

number of trainable parameters) of the model.

http://doi.org/10.54105/ijainn.A1061.123122
https://www.ijainn.latticescipub.com/

Indian Journal of Artificial Intelligence and Neural Networking (IJAINN)

ISSN: 2582-7626 (Online), Volume-3 Issue-1, December 2022

3

Retrieval Number: 100.1/ijainn.A1061123122

DOI:10.54105/ijainn.A1061.123122

Journal Website: www.ijainn.latticescipub.com

Published By:

Lattice Science Publication (LSP)

© Copyright: All rights reserved.

The map 𝑔 is chosen to be differentiable in model

parameters (maybe exact zero Lebesgue measure set).

For such models the gradient descent algorithm is

applicable. Given an initial parameter 𝜃0, we can define the

next approximations as

𝜃e+1 = 𝜃𝑒 − 𝛾𝛻𝐿(𝜃𝑒), (1)

where the parameter 𝛾 > 0 is called learning rate.

Neural networks are one of the most popular machine

learning algorithms. There are many types and constructions

of neural networks exist, but there is no general final

definition of neural network. In this work, we restrict a

notion of neural network 𝑁 by the following collection of

data:

1. 𝐺 = (𝑉, 𝐸)is a directed graph (oriented graph without

oriented cycles), elements of 𝑉 are also called neurons,

2. 𝐼 ⊆ 𝑉is the set of vertices without incoming edges,

3. 𝑂 ⊆ 𝑉contains all vertices without outcoming edges,

4. ({𝑤u,v}, {𝑏𝑣})are weights and biases (offsets) 𝑢, 𝑣 ∈ 𝑉,

𝑣 ∉ 𝐼, (𝑢, 𝑣) ∈ 𝐸 (we write the symbol • for brevity and

to avoid introduction of all indexes running over

corresponding definition domains. In this case we will

denote the collection of weights by (𝑤•,•, 𝑏•)),

5. 𝑎𝑣: ℝ → ℝis an activation function for each neuron 𝑣 ∉
𝐼.

We consider the generalization of the definition above by

identification of parameters 𝑏• for some subsets of vertices.

These subsets are called layers of neural network.

Let us introduce some additional notation for further

convenience.

[1] Given a network 𝑁, we call the subcollection of data

𝐴(𝑁) ≔ (𝐺, 𝑂, {𝑎𝑣}𝑣∈𝑉) the network’s architecture,

[2] The collection of data 𝑊 ≔ ({𝑤•,•}, {𝑏•}) ∈

ℝ𝐸⊕ℝ𝑉=Θ is said to be the set of weights (or trainable

parameters) of 𝑁,

[3] The network 𝑁 is said to be a neural network of

architecture 𝐴, initialized by weights 𝑊.

Transfer function of neuron 𝑣 ∈ 𝑉 is a function

where the sum is taken over all neurons 𝑢 with edges from

them to 𝑣.

Forward propagation 𝑓𝑝𝑁 of signal in the network 𝑁 is the

injection ℝ𝐼 → ℝ𝑉 defined inductively by transfer functions

of neurons 𝑣 ∈ 𝑉.

Transfer function 𝑁* of the network𝑁 is the restriction of

forward propagation on the subset of output

neurons, i. e. 𝑁* = (𝑓𝑝)|𝑂 (see Fig. 1).

Given some numeration of input and output neurons, we can

identify 𝑋 ≃ ℝ𝐼 and 𝑌 ≃ ℝ𝑂:

Scheme for definition of neural network transfer function.

Usually, some variants of gradient descent method are used

to train networks. Taking initial weights 𝜃0 in some random

way, repeatedly applied gradient descent unfold initial state

to the sequence of weights 𝜃𝑖, 𝑖 ∈ 𝑍⩾0. So, the training

method of a neural network consists of some variant of

gradient descent method and a stop-rule to break the

sequence 𝜃• and take some its element. The simplest variant

of gradient descent method is (1), but much more

sophisticated variants are used in most cases.

Explicit form of (1) was independently found by

Galushkin and Werbos in 1974 and was called the

backpropagation. The transfer function 𝑁* is expressed as a

superposition of neurons’ transfer functions as a function in

inputs and weights as coordinates in 𝑊. Therefore, partial

derivatives
𝜕𝐿

𝜕𝑤•,•
 and

𝜕𝐿

𝜕𝑏•
 at 𝐷1 = (x, y) can be expressed by a

chain rule through 𝐿′, 𝑎•′ and coordinates of 𝑥 and 𝑦.

Functions 𝐿 and 𝑎• are usually chosen to be differentiable in

explicit form without numerical differentiation.

Backpropagation takes the labeled dataset 𝐷ℓ to the vector

field 𝛻𝑄(𝐴, 𝐷ℓ) over 𝛩. So, training of neural network is

actually a dynamical system moving in 𝛩 along the vector

field in opposite direction.

Scheme of experiment for (𝑛, 𝑚) = (3,3).

Figure 1: Scheme of labeled datasets construction for (n,

m) = (3, 2)

Usually, some variants of gradient descent method are used

to train networks. Taking initial weights 𝜃0 in some random

way, repeatedly applied gradient descent unfold initial state

to the sequence of weights 𝜃𝑖, 𝑖 ∈ ℤ⩾0. So, the training

method of a neural network consists of some variant of

gradient descent method and a stop-rule to break the

sequence 𝜃• and take some its element. The simplest variant

of gradient descent method is (1), but much more

sophisticated variants are used in most cases. Explicit form

of (1) was independently found by Galushkin [8] and

Werbos [24] in 1974 and was called the backpropagation.

The transfer function 𝑁 is expressed as a superposition of

neurons’ transfer functions as a function in inputs and

weights as coordinates in 𝑊. Therefore, partial

derivatives
𝜕𝐿

𝜕𝑤•,•
 and

𝜕𝐿

𝜕𝑏•
 at 𝐷1 = (𝑥, 𝑦) can be expressed by

a chain rule through 𝐿′, 𝑎•′ and coordinates of 𝑥 and 𝑦.

Functions 𝐿 and 𝑎• are usually chosen to be differentiable in

explicit form without numerical differentiation.

http://doi.org/10.54105/ijainn.A1061.123122
https://www.ijainn.latticescipub.com/

Influence of Digital Fluctuations on Behavior of Neural Networks

4

Retrieval Number: 100.1/ijainn.A1061123122

DOI:10.54105/ijainn.A1061.123122

Journal Website: www.ijainn.latticescipub.com

Published By:

Lattice Science Publication (LSP)

© Copyright: All rights reserved.

Backpropagation takes the labeled dataset 𝐷ℓ to the vector

field 𝛻𝑄(𝐴, 𝐷ℓ) over 𝛩. So, training of neural network is

actually a dynamical system moving in 𝛩 along the vector

field in opposite direction.

V. EXPERIMENTSETTING

Definition 6. A fully connected architecture with sizes of

hidden layers ℎ1, … , ℎℓ and numbers of inputs and outputs 𝑛

and 𝑚 is the graph, where vertices are union of

subsets 𝑁, 𝐻1, … , 𝐻ℓ, 𝑀 of 𝑛, ℎ1, … , ℎℓ, 𝑚 elements

correspondingly and edges are from each vertex of 𝑁 to

each of 𝐻1, from each of 𝐻𝑗 to each of 𝐻j+1 for 𝑗 = 1, … , 𝑙 −

1, and from each of 𝐻ℓ to each of 𝑀, and there are no any

other edges; the set of output vertices 𝑂 coincides with 𝑀.

Let us denote this architecture by 𝐴(𝑛, ℎ1, … , ℎℓ, 𝑚). In the

case of unique hidden layer we will use the letter ℎ without

any index.

A fully connected neural network is a network of fully

connected architecture.

We will draw fully connected neural networks as graphs

where layers are placed vertically and the signal propagation

is directed to the right.

We will denote a network of architecture 𝐴(𝑛, ℎ, 𝑚)

initialized with weights of some random distribution

by 𝑅(𝑛, ℎ, 𝑚).

For research of digital noise, we perform series of

experiments. In these experiments a series of neural

networks of increasing sizes are trained on the same dataset.

Also, we perform series of experiments on real datasets.

Model datasets are points in a lattice inside the

cube [−1, 1]𝑛 ⊂ 𝑋. Namely, in coordinate segment [−1,1]
is subdivided by this lattice into 2000 equal parts, so dataset

consists of 2001𝑛 points. Hereafter we label this dataset by

pointwise application of some function 𝑓, and obtain a

dataset of form 𝐷ℓ = {𝑥𝑖 , 𝑦𝑖 = 𝑓(𝑥𝑖)}i=1
ℓ . We choose a

function 𝑓 equal to 𝑅(𝑛, ℎ, 𝑚).

Figure 3: Scheme for definition of neural network

transfer function

The function 𝑓 is the transfer function of neural

network 𝑅(𝑛, ℎ, 𝑚). An equivalent way to express such

function is to take an expression of form

𝑓•(𝑥) = ∑•

𝑛

⋅ 𝑎 (∑•

ℎ

j=1

⋅ 𝑥𝑗 +•) +•,

where • denotes each time a new real random coefficient. In

particular, for activation ReLU and 𝑛 = 1, in general case

we obtain a piecewise linear function with ℎ discontinuities

of derivative. Scheme of labeled dataset construction is

drawn on Fig. 2.

So, each dataset consists of 2001𝑑 entries and is a table of

form 2001𝑛 × (𝑛 + 𝑚).

We apply this procedure for the collection of neural

networks 𝑅(𝑛, ℎ, 𝑚), ℎ ∈ {1,2, … , ℎ∘} for some ℎ∘ (here

ℎ∘ = 100). Note that by the construction for any collection

of networks with the same 𝑛 the blocks of the first 𝑛

columns (the block 𝑋 on Fig. 2) coincide.

For each labeled dataset 𝐷, we perform the following

experiment:

[1] construct a collection of neural networks 𝑁(𝑛, ℎ, 𝑚)

for ℎ′ = 1, … , (ℎ′)∘ (we put (ℎ′)∘ = 100),

[2] the networks are initialized by default way,

[3] we choose some common parameters for the network

optimizer (we choose the Adam optimizer with learning

rate 0.001),

[4] all the networks are trained on this dataset during the

same number of epochs (for (𝑛, 𝑚) =
(1,1), (1,2), (1,3) it equals 10000, for (2,1) — 2000,

for (2,2) — 1000),

[5] as a result, we obtain the collections of weights 𝑊•,•,•
•

and loss function values 𝜆•,•,•
• ,

[6] we analyze the sequences {𝜆𝑛,ℎ,𝑚
𝑒 }

𝑒=1

𝐸𝑛,ℎ,𝑚
.

The scheme of experiment is illustrated on Fig. .

Figure 4: Fluctuations for dimensions (n, m) = (1, 2) and

dataset complexity h=10

VI. EXPERIMENT RESULTS

A. Modelexperiments

One can see examples of loss functions for networks of

different sizes trained on the same labeled dataset on Fig. .

Each illustration contains graphics of these loss functions

drawn with different color. It is easy to see that the lowest

values decrease as ℎ increases, but the beginning of the first

fluctuation moves to the left, and the amplitude grows.

Figure 5: Scheme of experiment for (n, m) = (3, 3)

http://doi.org/10.54105/ijainn.A1061.123122
https://www.ijainn.latticescipub.com/

Indian Journal of Artificial Intelligence and Neural Networking (IJAINN)

ISSN: 2582-7626 (Online), Volume-3 Issue-1, December 2022

5

Retrieval Number: 100.1/ijainn.A1061123122

DOI:10.54105/ijainn.A1061.123122

Journal Website: www.ijainn.latticescipub.com

Published By:

Lattice Science Publication (LSP)

© Copyright: All rights reserved.

Figure 6: Fluctuations for networks with input and

output dimensions (n, m) = (1, 1) trained on dataset of

complexity h=10.

Figure 7: Fluctuations for dimensions (n, m) = (1, 3) and

dataset complexity h=10

Figure 8: Fluctuations for dimensions (n, m) = (2, 1) and

dataset complexity h=15

Figure 9: Fluctuations for dimensions (n, m) = (2, 2) and

dataset complexity h=15.

To improve visibility of typical behavior of best achieved

loss function value, we smoothen the graph (see Fig.).

Figure 10: Loss function logarithm for train of LeNet-5

on MNIST with Adam optimizer, lr=0.001, black line for

train loss and red line for test loss.

On Fig. one can see the initial part of graph for set of such

smoothened curves for (𝑛, 𝑚) = (1,2).

Figure 11: Smoothened behavior of logarithm of loss

function depending on h arranged from 1 to 100 with

parameters (n, m) = (1, 1), h=22; the vertical line

corresponds to h=22.

So, the view of smoothened distribution (to decrease the

noise) of logarithms of minimal loss function as a function

of the network size suggests that there should be on optimal

choice of network size for training on this dataset.

Training of the model neural networks was performed for a

month on one GPU NVidia Quadro P5000.

B. Experimentsonrealdatasets

Figure 12: Sequence of smoothened curves of logarithms

of lowest loss function values before fluctuations in

dependence of network size. Dataset complexity

corresponds to vertical line of the same color. Here (n,

m) = (1, 2)

http://doi.org/10.54105/ijainn.A1061.123122
https://www.ijainn.latticescipub.com/

Influence of Digital Fluctuations on Behavior of Neural Networks

6

Retrieval Number: 100.1/ijainn.A1061123122

DOI:10.54105/ijainn.A1061.123122

Journal Website: www.ijainn.latticescipub.com

Published By:

Lattice Science Publication (LSP)

© Copyright: All rights reserved.

Here we check that the digital fluctuations appear with

network Lenet5 on the dataset MNIST. For this network we

have tested about ten standard optimizers, and the

fluctuations have appeared in all the cases. For the optimizer

Adam and SGD (seeming to be most popular) one can see

the fluctuations on Fig. , Fig.

Figure 13: Loss function logarithm for train with SGD

optimizer, lr=0.9.

Fluctuations for real world examples show that they are not

an effect of experiments model.

VII. APPLICATIONTOFINETUNING

Suppose we have a neural network trained to solve problem

on some big dataset. We want to fine tune it on our smaller

dataset. Then we can fine tune all the network or some of its

layers (usually, a subset of some last layers) on our dataset.

Then it would be a good idea to shrink layers to the sizes

corresponding to complexity of our dataset. This means that

replacement of layers to smaller ones may improve numeric

stability and convergence, and finally to improve the

resulting performance. For a few layers they can be tuned

separately. If we apply the initial network to simpler dataset,

than the dataset it was trained on, then the fine-tuning may

converge better on smaller layer sizes, because the network

may converge worse due to presence of layers redundant

with respect to our dataset. So, redundancy of a network or

its layer size is not absolute, but depends on the dataset.

VIII. CONCLUSION

We have researched the fluctuations arising at network

training. It turns out that they appear almost everywhere.

Digital fluctuations lead to growth of loss function by a few

order of value and to loss of significance. It implies that

training should be stopped, when fluctuations begin. So,

observation of fluctuations can help to stop the training,

when it loses sense. Moreover, we should observe them to

avoid subsequent interpretation of meaningless inference

values. We have compared minimal achieved loss function

values for series of neural networks of different sizes for the

same dataset of known complexity and repeated it for

different complexities. It turns out that in these sequences

the minimal loss function values decrease at the beginning

and then begin to oscillate and finally increase. This implies

that we cannot infinitely increase network accuracy with

choosing bigger networks and/or longer training process.

Conversely, there is some best choice for network size. In

many cases the best accuracy is achieved by networks of

sizes close to the dataset complexity.

This suggests that there are some estimation of size of

network achieving the best quality, and this estimation is

close to the dataset complexity. For large complexities, we

can see in experiment that the estimation of best

approximating network size does not increase linearly as

dataset complexity increases. This can be explained by the

fact that very close placement of the learning function

breakpoints sometimes can approximate the function by

network of lower size than function complexity. We can see

that for long enough training the fluctuations begin almost

everywhere. So, in case of numerical instability of fine

tuning on smaller datasets, it is reasonable to decrease layer

sizes to achieve better performance and preserve significant

digits in result. Although a bigger network can express any

function that can be expressed by smaller networks,

experiments show that this does not happen in practice, and

redundant networks usually confuses itself by accumulating

digital noise. This digital noise accumulates and in some

time gets bigger than the meaningful part of result and

makes network inference useless.

ACKNOWLEDGMENTS

The author is grateful to his Kryptonite colleagues Vasilii

Dolmatov, Nikita Gabdullin and Anton Raskovalov for

fruitful discussions of topic and results.

REFERENCES

1. Arnold, Vladimir I. 2009. “On Functions of Three Variables.”

Collected Works: Representations of Functions, Celestial Mechanics

and KAM Theory, 1957–1965, 5–8.
2. Brown, Tom, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D

Kaplan, PrafullaDhariwal, Arvind Neelakantan, et al. 2020.

“Language Models Are Few-Shot Learners.” In Advances in Neural
Information Processing Systems, edited by H. Larochelle, M.

Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, 33:1877–1901. Curran

Associates, Inc.
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418

bfb8ac142f64a-Paper.pdf.

3. Chen, Tianping, Hong Chen, and Ruey-wen Liu. 1992. “A
Constructive Proof and an Extension of Cybenko’s Approximation

Theorem.” In Computing Science and Statistics, edited by Connie
Page and Raoul LePage, 163–68. New York, NY: Springer New

York. [CrossRef]

4. Cybenko, George. 1989. “Approximation by Superpositions of a
Sigmoidal Function.” Mathematics of Control, Signals and Systems 2

(4): 303–14. [CrossRef]

5. Cybenko, George V. 1989. “Approximation by Superpositions of a
Sigmoidal Function.” Mathematics of Control, Signals and Systems 2:

303–14. [CrossRef]

6. Funahashi, Ken-Ichi. 1989. “On the Approximate Realization of

Continuous Mappings by Neural Networks.” Neural Networks 2 (3):

183–92. [CrossRef]

7. He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015.
“Deep Residual Learning for Image Recognition.” CoRR

abs/1512.03385. http://arxiv.org/abs/1512.03385.

8. I., Galushkin A. 1974. SintezMnogosloinyh System
RaspoznavaniyaObrazov (in Russian). M.: Energiya.

9. Kidger, Patrick, and Terry Lyons. 2020. “Universal Approximation

with Deep Narrow Networks.” In Conference on Learning Theory,
2306–27. PMLR.

10. Kolmogorov, A. N. 1957. “On the Representation of Continuous

Functions of Many Variables by Superposition of Continuous
Functions of One Variable and Addition.” Dokl. Akad. Nauk SSSR

114: 953–56.

11. Kon, Mark A, and LeszekPlaskota. 2000. “Information Complexity of
Neural Networks.” Neural Networks 13 (3): 365–75. [CrossRef]

http://doi.org/10.54105/ijainn.A1061.123122
https://www.ijainn.latticescipub.com/
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1007/978-1-4612-2856-1_21
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1016/0893-6080(89)90003-8
http://arxiv.org/abs/1512.03385
https://doi.org/10.1016/S0893-6080(00)00015-0

Indian Journal of Artificial Intelligence and Neural Networking (IJAINN)

ISSN: 2582-7626 (Online), Volume-3 Issue-1, December 2022

7

Retrieval Number: 100.1/ijainn.A1061123122

DOI:10.54105/ijainn.A1061.123122

Journal Website: www.ijainn.latticescipub.com

Published By:

Lattice Science Publication (LSP)

© Copyright: All rights reserved.

12. Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton. 2012.
“ImageNet Classification with Deep Convolutional Neural

Networks.” In Advances in Neural Information Processing Systems,

edited by F. Pereira, C. J. Burges, L. Bottou, and K. Q. Weinberger.
Vol. 25. Curran Associates, Inc.

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c84

36e924a68c45b-Paper.pdf.
13. Lecun, Yann. 1989. “Generalization and Network Design Strategies.”

In Connectionism in Perspective, edited by R. Pfeifer, Z. Schreter, F.

Fogelman, and L. Steels. Elsevier.
14. Lecun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.

Hubbard, and L. D. Jackel. 1990. “Handwritten Digit Recognition

with a Back-Propagation Network.” In Advances in Neural
Information Processing Systems 2, edited by D. S. Touretzky, 396–

404. Morgan Kaufmann.

15. Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998. “Gradient-
Based Learning Applied to Document Recognition.” Proceedings of

the IEEE 86 (11): 2278–2324. https://doi.org/10.1109/5.726791.

[CrossRef]
16. Nguyen, Andre T., and Edward Raff. 2018. “Adversarial Attacks,

Regression, and Numerical Stability Regularization.” arXiv e-Prints,

December, arXiv:1812.02885. https://arxiv.org/abs/1812.02885.
17. Saarinen, S., R. Bramley, and G. Cybenko. 1993. “Ill-Conditioning in

Neural Network Training Problems.” SIAM Journal on Scientific

Computing 14 (3): 693–714. https://doi.org/10.1137/0914044.
[CrossRef]

18. Simonyan, Karen, and Andrew Zisserman. 2014. “Very Deep
Convolutional Networks for Large-Scale Image Recognition.” CoRR

abs/1409.1556. http://arxiv.org/abs/1409.1556.

19. Sinha, Abhishek, Mayank Singh, and Balaji Krishnamurthy. 2019.
“Neural Networks in an Adversarial Setting and Ill-Conditioned

Weight Space.” In ECML PKDD 2018 Workshops, edited by Carlos

Alzate, Anna Monreale, HaythamAssem, Albert Bifet, Teodora
Sandra Buda, Bora Caglayan, Brett Drury, et al., 177–90. Cham:

Springer International Publishing. [CrossRef]

20. Song, Le, Santosh Vempala, John Wilmes, and Bo Xie. 2017. “On the
Complexity of Learning Neural Networks.” Advances in Neural

Information Processing Systems 30.

21. Szegedy, Christian, Wei Liu, YangqingJia, Pierre Sermanet, Scott E.

Reed, DragomirAnguelov, DumitruErhan, Vincent Vanhoucke, and

Andrew Rabinovich. 2014. “Going Deeper with Convolutions.” CoRR

abs/1409.4842. http://arxiv.org/abs/1409.4842.
22. Szegedy, Christian, Vincent Vanhoucke, Sergey Ioffe, Jonathon

Shlens, and ZbigniewWojna. 2015. “Rethinking the Inception

Architecture for Computer Vision.” CoRR abs/1512.00567.
http://arxiv.org/abs/1512.00567.

23. Szegedy, Christian, WojciechZaremba, Ilya Sutskever, Joan Bruna,

Dumitru Erhan, Ian Goodfellow, and Rob Fergus. 2013. “Intriguing
properties of neural networks.” arXiv e-Prints, December,

arXiv:1312.6199. https://arxiv.org/abs/1312.6199.

24. Werbos, Paul. 1974. “Beyond Regression:" New Tools for Prediction
and Analysis in the Behavioral Sciences.” Ph. D. Dissertation,

Harvard University.

25. Y., LeCun, Boser B., Denker J. S., D. Henderson, Howard R. E.,
Hubbard W., and Jackel L. D. 1989. “Backpropagation Applied to

Handwritten Zip Code Recognition.” Neural Computation 1: 541–51.

https://doi.org/10.1162/neco.1989.1.4.541. [CrossRef]

AUTHORS PROFILE

Igor V. Netay, MS in Mathematics in MSU and

IUM, Moscow, Russia; PhD in IITP, Moscow,
Russia. He is a researcher at JSRPC Kryptonite and

at IITP. The principal areas of research in which

the author has worked are: Neural Networks, Alge-
braic Geometry, Algebraic Topology, Representa-

tion Theory, Dynamical systems. (1) I. V. Netai,

“Parabolically connected subgroups”, Mat. Sb.,
202:8 (2011), 81–94; Sb. Math., 202:8 (2011),

1169–1182 (2) I. V. Netay, “Syzygy Algebras for Segre Embeddings”,

Funkts. Anal. Prilozh., 47:3 (2013), 54–74; Funct. Anal. Appl., 47:3 (2013),
210–226 (3) V. V. Buchstaber, I. V. Netay, “Hirzebruch functional equa-

tion and elliptic functions of level d”, Funct. Anal. Appl., 49:4 (2015) (4) I.

V. Netay, “Syzygies of quadratic Veronese embedding”, Sb. Math., 208:2
(2017) (5) Igor V. Netay, Alexei V. Savvateev, “Sharygin Triangles and

Elliptic Curves", Bull. Korean Math. Soc., 54:5 (2017), 1597-1617. (6) I.

V. Netay, “Hirzebruch functional equations and complex Krichever gene-
ra", arXiv: https://arxiv.org/abs/1610.04654. (7) Glutsyuk, A.A., Netay,

I.V., \On Spectral Curves and Complexified Boundaries of the Phase-Lock

Areas in a Model of Josephson Junction", J. Dyn. Control Syst., 2020. (8) I.
Netay, “Cyclic space-filling curves and their clustering property", Danish

Scientific Journal, 45:2 (2021), 30-39.

http://doi.org/10.54105/ijainn.A1061.123122
https://www.ijainn.latticescipub.com/
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://arxiv.org/abs/1812.02885
https://doi.org/10.1137/0914044
https://doi.org/10.1137/0914044
http://arxiv.org/abs/1409.1556
https://doi.org/10.1007/978-3-030-13453-2_14
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1312.6199
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://arxiv.org/abs/1610.04654

