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Abstract: The Human decision-making process works by 

recollecting past sequences of observations and using them to 

decide the best possible action in the present. These past sequences 

of observations are stored in a derived form which only includes 

important information the brain thinks might be useful in the 

future, while forgetting the rest. we propose an architecture that 

tries to mimic the human brain and improve the memory efficiency 

of transformers by using a modified Transformer XL architecture 

which uses Automatic Chunking which only attends to the relevant 

chunks in the transformer block. On top of this, we use Forget Span 

which is technique to remove memories that do not contribute to 

learning. We also theorize the technique of Similarity based 

forgetting to remove repetitive memories. We test our model in 

various tasks that test the abilities required to perform well in a 

human-robot collaboration scenario. 

Keywords: Robotics, Machine Vision and Scene 

Understanding, Reasoning Under Uncertainty 

I. INTRODUCTION

Human cognition and decision-making works on

reflection on only relevant parts of memory. We can recall 

specific past sequences of events in detail, without paying 

attention to everything in our memory (Chan et al., 2017, [1]) 

(Sols et al., 2017, [2]). Irrelevant and repetitive parts of 

memory are overlooked, preferring storage of a broader 

picture of events based on the importance of each event. 

Robotic agents should have similar cognition to function well 

in long horizon and multi-modal tasks like navigation or 

human-robot collaboration. The memory buffer should be 

concise, containing events that will be useful for decision 

making in the present and future while forgetting the rest 

(Nematzadeh et al., 2020, [3][8][9][10]). To emulate this in 

our architecture we propose the use of Automatic Chunking 

and Forget Span on the TransformerXL memory buffer. 

Automatic chunking helps by chunking the memory and only 

using the relevant chunks in the TransformerXL layers while 

ForgetSpan masks out unnecessary and repetitive elements 

from the memory creating a more concise memory buffer 

which improves memory efficiency and performance.  
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We also test a preliminary version of Similarity Weight which 

decides whether a current observation should be stored in the 

memory by comparing it with the existing elements in the 

buffer. 

II. ARCHITECTURE AND TESTING

METHODOLOGY 

Figure 1: Transformer XL Architecture 

We use a Gated TransformerXL backbone (Pleines et al., 

2023, [4]) which we modify to add Automatic Chunking, 

Forget Span and Similarity Weight. The main architecture of 

Gated TransformerXL consists of a cyclic memory buffer 

which stores a specified number of pre-processed 

observations. The input observations are first pre-processed 

by a 3 layered convolutional encoder. This encoded 

observation is stored in memory and also fed to the 

TransformerXL block as the query. The memory buffer is 

used to calculate the key and value in the TransformerXL 

block. The output of the transformer block is then used to 

create a categorical distribution over the action space, from 

which actions are sampled. PPO2 (proximal policy 

optimization) is used to in all models to perform consistent 

updates and to limit how far we can change the policy in each 

iteration using KL-divergence. The network policy learns to 

take appropriate actions based on the current observation and 

memory during training. 

A. Automatic Chunking

In Automatic chunking, we insert our chunking algorithm

in between the step where the memory buffer is passed to the 

Transformer XL block to calculate the key and value.  
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The memories are instead split into sequential chunks of 

constant size and each chuck is assigned a summary value 

which is calculated through mean pooling. The memory mask 

is taken into account while chunking so unfilled memory 

elements do not contribute to the summary value. Attention is 

performed on these mean values and the query to calculate the 

top-k chunks of memory that are relevant to the current 

scenario. These top-k memories are then combined and sent 

to the Transformer XL block to be used as the key and value 

in place of the whole memory buffer. This reduces the number 

of memories that need to be attended by the transformer block 

as well as provides more contextual memories. This allows 

the transformer to work more efficiently with lesser memories 

as well as provide a more accurate output in the current 

context. The chunk size and number of chunks used in our 

experiments have been detailed in the appendix. 

B. ForgetSpan 

In ForgetSpan, we use masking to remove memories from 

the memory buffer after a certain span of time. The model 

learns to decide the span each memory element will stay in 

the buffer using the logic below and removes memories that 

do not contribute to learning. This allows the transformer to 

learn from a more concise memory buffer, improving learning 

as well as reducing the memory requirement of the model. 

We calculate a ForgetSpan fi ∈ [0, F] for every element in 

memory mi 

fi = Fσ(WT mi + B)                                          (1) 

Here W and B are a trainable weight and bias, sigma is a 

sigmoid function for activation and F is the maximum span 

an element can stay in memory. W and B constitute a basic 

linear layer applied to the memories which learns to 

approximate an ideal function for calculating the span each 

memory element should stay in the memory as it trains. 

We calculate the remaining span rti at every timestep t for the 

ith memory element. 

rti = fi − (t − i)                                                      (2) 

When rti becomes negative, it means the element has to be 

forgotten and can be masked out of the memory buffer. We 

use a soft masking function that creates a smooth mask from 1 

to 0 once the element has to be forgotten. 

sti = max(0, min(1, 1 + rti/R))                                              (3) 

Where R is the ramp length of the ramp between 1 and 0. 

This allows fi to receive a gradient to train as the masking 

function has a non-zero gradient between [−R, 0]. The 

parameters for ForgetSpan used in our experiments are 

detailed in the appendix. 

C. SimilarityWeight 

In SimilarityWeight we calculate the similarity between 

the current observation with all the elements currently in the 

memory buffer using cosine similarity. We then bin the 

similarity values into 10 bins and calculate the number of 

values in the top k bins. We use k=3 for our experiment in the 

Minigrid Task. This number is used to represent the similarity 

of the current element with the memory as it denotes that the 

number of memories the current observation is highly similar 

with. We use a threshold of 0.6 was used in our experiment 

which denotes that a memory element which is similar to more 

than 60 percent of the memory buffer will be removed. If the 

value of similarity is greater than the threshold, that means the 

memory is highly similar to the memory buffer and so it is not 

stored. If the value of similarity is lower than the threshold, 

the memory is stored. Where similarity is: 

similarity = topkbins(cossimi(obs, memory))                    (4) 

Where topkbins is the function to bin and choose the top-

k highest populated bins. Cosine sim- ilarity is calculated 

using the torch.nn.CosineSimilarity function. 

SimilarityWeight is employed to remove new observations 

that are extremely similar to elements already in the memory 

thus creating a small memory with highly focused elements. 

D. Testing Methodology 

We test our model with various combinations of our 

proposed memory handling techniques on 5 different tasks. 

Each task is designed to test various abilities of the model 

such as memory, navigation, planning, robotic control and 

multi-modal deciphering. We believe these to be important 

abilities a robotic agent would require in achieving human-

robot collaboration tasks in real world applications. We train 

the models on each task till they achieve a satisfactory 

performance and then modify the environment during testing 

to test the generalizability of the trained model. Training 

parameters used in each task as stated in Appendix A. 

The Minigrid memory task was implemented using the 

Minigrid environment package (Chevalier- Boisvert et al., 

2023, [5]). Unity MLAgents toolkit (Juliani et al.,  2020, [6]) 

was used for implementing the Audio-Visual Instructions 

Task and Visual Corridor task. The Visual Instructions task 

was implemented using the Miniworld environment package 

(Chevalier-Boisvert et al., 2023, [5][11][12]), the Humanoid 

locomotion task was implemented using the Mujoco physics 

engine. We interface the environments with our models coded 

in PyTorch using the OpenAI Gym API (Brockman et al., 

2016, [7]). The tasks are discussed in detail in the Section 3 

below. Various combinations of Gated and Ungated 

TransformerXL, Automatic Chunking, ForgetSpan and 

SimilarityWeight were tested in all the tasks to see the effects 

on training performance. 

III. RESULTS AND DISCUSSIONS 

A. Minigrid Memory Task 

 

Figure 2: Minigrid Task 
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The goal of this task is to correctly remember the object 

seen in the initial room (on the left) and then navigate to the 

end of the corridor and touch the same object. The agent’s 

observation space includes a 5x5 square image of the grid 

ahead of the agent. The action space is discrete with the 

actions Turn left, Turn right and Move forward. This task tests 

the agent’s ability to remember the information at the start of 

the episode and use it effectively to reach the final goal. In 

Figure 3, we plot then average rewards across episodes for 

Baseline Gated TransformerXL, Gated TransformerXL with 

Automatic chunking, Gated TransformerXL with Automatic 

chunking and ForgetSpan and Automatic chunking with 

ForgetSpan and Similarity Weight.  

 

 

Figure 3: Minigrid Task training rewards 

Automatic Chunking with ForgetSpan learns the task 

slightly faster than Gated TransformerXL with Automatic 

chunking which in turn trains faster than the baseline Gated 

TransformerXL. Automatic Chunking with ForgetSpan and 

SimilarityWeight gives the best results by training the fastest 

and with the highest reward. Automatic Chunking with 

ForgetSpan and SimilarityWeight gives the best results by 

pre-processing the memories and complimenting Automatic 

Chunking but the computational cost increase is significant as 

we have to calculate similarity of a new observation with the 

whole memory buffer every timestep. 

B. Audio Visual Instructions Task 

 

Figure 4: Audio-Visual Instructions Task with and 

without wall 

In this task the agent gets one of two audio commands 

randomly at the start of each episode, either “red cube” or 

“green cube”. The agent then has to navigate based on visual 

inputs to the specified cube. The observation space consists of 

audio spectrograms of size 41 X 42 X 1 along with visual 

observations of size 41 X 42 X 3. This task tests the agent’s 

recollection as well as multi-modal instruction deciphering 

ability. The episode ends whenever the agent touches one of 

the objects. We tested three versions of this task: 

1. Static Boxes with static reward (+10 for reaching the 

correct goal and -1 for not) 

2. Moving Boxes with dynamic rewards based on the 

distance from the correct goal 

3. Moving Boxes with dynamic rewards and a moving 

wall for partial observations 

The Static version was used in the results shown in Figure 

5 and Table 1 while we used the Moving versions to test the 

generalizability of the Automatic Chunking with ForgetSpan 

model in a more dynamic environment. Dynamic rewards 

were used to incentivize the correct goal and the positions of 

the boxes and wall were randomized at the start of every 

episode. The trained model was tested for 100 episodes and 

the results are shown in Table 2. 

In Figure 5, we plot the average training rewards for Gated 

TransformerXL, Gated TransformerXL with Automatic 

chunking, Automatic chunking TransformerXL with 

ForgetSpan with ramp length 64 and 32. As we can see 

Automatic chunking with ForgetSpan with Ramp length 32 

has the best performance with the highest rewards and fastest 

training. Increasing the Ramp length to 64 led to worsening 

performance. This is probably caused by the gradient used to 

train the ForgetSpan is more gradual leading to slower 

learning of the ForgetSpan layer. Automatic Chunking 

TransformerXL performed better than baseline 

TransformerXL while being better than ForgetSpan with 

ramp length 64 and worse than ForgetSpan with ramp length 

32. 

 

Figure 5: Audio-Visual Instructions Task Rewards 

Table 1: Audio-Visual Instructions with Static Boxes 

Task Testing Results 

Task Success/Total episodes Fail/Total episodes 

Static Boxes with same 

positions 

27/29 2/29 

Static Boxes with 

changed positions 

24/29 5/29 

Static Boxes with Color 

changed 

51/100 49/100 

To test whether our model was generalizable and had 

learned a correct mapping between the color of the box and 

the audio instruction we tested the trained model on three 

scenarios: 

1. Static boxes in the same positions as in training 

2. Static boxes in different positions than in training 

3. Static boxes in the same positions as in training but 

the green box color is changed to blue 
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This would test if the model had learned a proper mapping 

between audio and visual observations. Table 1 shows the 

number of episodes where the agent went to the correct goal. 

As we can see the model was able to go to the correct target 

with a success rate of 93% and 82% in the first two scenarios 

proving that it had learnt to navigate to the target correctly. 

The episodes where it missed the targets could be attributed 

to the agent travelling past the boxes and not being having 

them in its view. In scenario 3 the agent achieved a success 

rate of 51% when the audio ”red cube” was played. But it was 

observed that when the ”green cube” audio was played, the 

agent avoided going to the blue box and just roamed around 

the arena searching for a green box. This proves that it had 

learnt a correct mapping between the color of the target and 

the audio cue. 

Table 2: Audio-Visual Instructions with Moving 

Boxes Task Testing Results 

Task Success/Total episodes Fail/Total episodes 

Moving Boxes without Wall 94/100 6/100 

Moving Boxes with Wall 96/100 4/100 

 

As can be seen in Table 2, the trained model was able to 

achieve a success rate of 94% and 96% in the Moving cubes 

version of the Audio-Visual Instructions Task with and 

without the wall respectively. These results prove that 

Automatic Chunking with ForgetSpan help achieve 

generalization by reaching the goal even when the 

environment is dynamic with changing goal positions, 

obstructions and partial observations. Automatic Chunking 

with ForgetSpan help the model to give more importance to 

the goals and thus is able to adapt in a dynamic goal scenario. 

C. Visual Corridor Task with Variable Distractor 

 

Figure 6: Visual Corridor Task environment in 

Unity 

In this task the agent observes one of the two cubes either 

red or green in color at the start of each episode. The agent 

then has to navigate along a long corridor of variable length 

until it reaches the end at which time it is teleported to the 

final room where it has to go to the cube it saw at the start of 

the episode. The observation space consists of visual 

observations of size 40 X 40 X 3 and the position of the agent. 

This task tests the agent’s ability to recall information after a 

variable distractor phase. We only tested Automatic Chunking 

with ForgetSpan in this task as we wanted to test the forgetting 

of ForgetSpan as well as the chunk selection of Automatic 

Chunking in a more dynamic scenario. 

In Figure 7 we can see that Automatic Chunking with 

ForgetSpan using ramp length 100 trained by 150 episodes 

and learnt to do the task even with the variable distractor 

phase. Automatic chunking without ForgetSpan took longer 

to train but reached the same final rewards. 

 

Figure 7: Visual Corridor Task Rewards 

This shows that ForgetSpan improves training 

performance of Automatic Chunking significantly while also 

improving memory efficiency. To test whether our model was 

generalizable, during the test scenario we doubled the length 

of the variable distractor and tested for 30 episodes. Both 

models managed to reach the final goal for 30 out of 30 

episodes as shown by the approximately 15 reward received 

by each of them every episode in Figure 8. 

 

Figure 8: Visual Corridor Test Rewards 

D. Visual Instructions Task 

In this task the goal of the agent is to perceive a sign 

present in the environment which displays the name of a 

specific color. The agent then has to use its visual navigation 

abilities to navigate to the object with the specified color. The 

action space is discrete, with 3 actions, Turn right, Turn left 

and Go forward. RGB Visual observations of size 80 X 60 x 

3 were used. This task tests the ability of the agent to 

remember the information seen at the start of the episode and 

correctly decipher to navigate to the final goal. Thus, this task 

tests the agent’s memory along with its visual navigation 

abilities. 

In Figure 10, we plot the average worker rewards and 

average entropy (randomness) of the model across episodes 

respectively for Ungated Transformer XL, Gated Transformer 

XL, Ungated 
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Figure 9: Visual Instructions Task 

 

(a) Rewards 

 

(b) Entropy 
 

Figure 10: Visual Instructions Task Results 
 

TransformerXL with Automatic chunking, Gated 

TransformerXL with Automatic chunking and Gated 

Automatic chunking without mean pooling. Gated 

TransformerXL with Automatic chunking had the highest 

rewards and lowest entropy during training. Decrease in 

entropy signifies successful training. Both gated algorithms 

showed superiority in terms of training time, randomness and 

rewards achieved. Gated Automatic chunking and Ungated 

Automatic chunking showed better results as compared to 

Gated TransformerXL and Ungated TransformerXL 

respectively. The purple line in corresponds to Gated 

Automatic chunking without use of mean pooling. In this 

case, direct averaging across chunks was done to calculate 

mean values. Although this method led to lower entropy 

values, the reward values were considerably lower during 

training. Only Gated automatic chunking with mean pooling 

managed to surpass Gated TransformerXL due to a more 

concise memory being used by the transformer. 

E. Humanoid Task 

 

Figure 11: Humanoid Task 

In this task, the main goal is to make the humanoid agent 

balance standing upright for as long as possible. The 

observation space used is 376 dimensional, consisting of the 

position values, angular values and the forces applied across 

the various joints. The reward is directly proportional to the 

amount of time spent by the agent in standing position. The 

action space for this task is 17 dimensional, which includes 

movement of all its body parts. This task tests agent’s ability 

to perform effectively when dealing with huge action and 

observation spaces, generally found in real world robotic 

tasks. Training results for Gated Automatic chunking using 2 

transformer blocks, Gated TransformerXL with 2 blocks and 

Gated TransformerXL with 1 block are plotted in Figure 12. 

The gated algorithms with two transformer blocks proved 

to be better in terms of training rewards as compared to Gated 

TransformerXL with 1 transformer block. The entropy for 

Gated TransformerXL was lower with 1 transformer block 

however the fluctuations were also higher. Gated 

TransformerXL with Automatic chunking and two 

transformer blocks had the highest re- ward and lowest 

entropy (randomness in actions taken) during training. This 

shows that increasing the number of transformer blocks is 

beneficial when dealing with high dimensional action and 

observation spaces. 

 

(a) Rewards 
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(b) Entropy 

Figure 12: Humanoid Task Results 

IV. CONCLUSION 

Transformers with Automatic chunking and memory 

handling techniques like ForgetSpan and SimilarityWeight 

showed greater memory efficiency and performance over 

regular trans- formers models in memory, robot navigation, 

and multi-modal tasks. Automatic chunking im- proved the 

baseline TransformerXL by giving a more focused memory for 

the transformer block to attend to. ForgetSpan and 

SimilarityWeight showed good synergy with Automatic 

chunking, improving the training speed as well as the memory 

efficiency of the model by creating a concise memory with 

only relevant memories for the transformer architecture to 

work on. This work aims to improve the performance of 

Robotic agents in Human-Robot Collaboration tasks which 

are generally multi-modal, long horizon and dynamic in 

nature and would greatly benefit from human-like memory. 

Automatic Chunking, ForgetSpan and SimilarityWeight are a 

step towards emulating human-like cognition in robots. 
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Appendix A. Parameters and Implementation Details 

All the hyperparameters used while training the models in this 

research work are listed below. 

Appendix A.1. PPO Parameters 

• learning rate(initial): 3e-4 (decays consistently during 

training, final value is 3e-5) 

• gamma: 0.995 

• lambda: 0.95 

• updates: 100 

• epochs: 5 

• n workers: 20 

• n mini batch: 10 

The above standard Proximal policy optimization parameters 

were chosen with extensive testing for the purpose of making 

sure that optimal behavior is learnt within 200-250 training 

episodes for the standard TransformerXL model. These 

parameters were kept the same across all the models used in 

this research work in order to obtain appropriate comparative 

results. All tasks made use of 20 workers and 10 mini 

batches in order to reduce training time. 

Appendix A.2. Transformer Parameters 

• embed dim: 250 

• number of heads: 5 

• memory length: 64 

• positional encoding: True 

• gating: True 

With extensive testing, the above parameters were changed 

based on the task in order to speed up training and get stable 

results. However, the same values were taken during 

comparative study with different architectures. The embed 

dimension parameter specifies the common dimension to 

which the keys, queries and values will be converted to make 

the multilevel attention mechanism work. The number of 

heads parameter specifies the amount of transformer heads. 

For all tasks, the embed dimension was 250 and the number 

of heads were 5. Both positional encoding and layer 

normalization were set to true for all the tasks to ensure that 

proper and effective sequence processing is performed by the 

transformer. The memory length parameter specifies the 

amount of time step information stored in the memory buffer. 

Memory length for the humanoid loco- motion task was set 

to 300 and for the audio-visual navigation task it was set to 

384. For the visual instructions task and minigrid task, it was 

set to 250 and for the visual corridor task was set to 500. In 

order to understand the effectiveness of a single automatic 

chunking mechanism operating on the entire memory, only a 

single transformer block was used for all the experiments 

except the humanoid locomotion task. The Gating parameter 

was used to decide whether a gating mechanism is 

implemented. 

Appendix A.3. Memory Parameters 

• n chunks: 3 

• chunk size: 50 

• max span: 250 

• ramp length: 50 

The chunk size and number of chunks denote the length and 

number of sequential events being selected during training. 

The number of chunks were set to 3 for all experiments. For 

the humanoid locomotion and audio-visual instructions task, 

the chunk size was set to 80. For the visual instructions and 

minigrid tasks the chunk size was set to 50 while for the 

visual corridor task the chunk size was set to 100. We 

decided the chunk size so that the summarized memory 

buffer size was approximately 60% of the complete memory 

buffer as this gave better results during testing. In all tasks 

the max span of ForgetSpan was kept to be the size of the 

memory buffer while ramp lengths were changed according 

to the task. While testing we concluded that lower ramp 

lengths gave better results. 
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