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Abstract: Air pollution is a growing concern due to its adverse 

effects on human health and the environment [1]. Traditional air 

quality monitoring stations provide accurate data but are 

expensive to maintain and limited in coverage [2]. This research 

explores an AI-based anomaly detection framework to enhance 

air quality assessment and support the development of virtual 

monitoring stations [3]. The study utilizes four machine learning 

techniques—Z-score, Isolation Forest, Autoencoders, and Long 

Short-Term Memory (LSTM) networks—to analyse pollution data 

[4]. The Z-score method detects extreme pollution values by 

measuring statistical deviations [5], while Isolation Forest 

identifies outliers by isolating anomalies in the dataset [6]. 

Autoencoders, a deep learning approach, learn typical pollution 

patterns and highlight deviations [7], and LSTM networks 

forecast air quality trends while identifying unexpected pollution 

spikes [8]. By integrating these techniques, the proposed system 

improves pollution monitoring, allowing for real-time detection of 

anomalies and better forecasting of pollution levels [9]. The 

findings suggest that AI-driven virtual monitoring stations can 

provide a scalable, cost-effective alternative to traditional sensor-

based systems [10]. This approach has the potential to enhance 

environmental monitoring, support proactive pollution control 

measures, and contribute to data-driven policymaking for air 

quality management [11]. 
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I. INTRODUCTION

Air pollution remains a critical global issue, posing

severe risks to human health, ecosystems, and overall 

environmental stability [1]. High levels of pollutants such as 

particulate matter (PM2.5, PM10), nitrogen dioxide (NO₂), 

sulphur dioxide (SO₂), and carbon monoxide (CO) contribute 

to respiratory diseases, cardiovascular problems, and climate 

change [2]. Monitoring air quality is essential for 

understanding pollution trends, issuing health advisories, and 

implementing control measures [3]. 

Traditional air quality monitoring stations provide precise 

pollutant measurements; however, they are expensive to 

install and maintain,  

Manuscript received on 30 March 2025 | First Revised 

Manuscript received on 08 April 2025 | Second Revised 

Manuscript received on 12 April 2025 | Manuscript Accepted on 

15 April 2025 | Manuscript published on 30 April 2025. 
*Correspondence Author(s) 

Raghav Abrol*, Researcher, Department of CSAI, NSUT, New Delhi, 

India. Email ID: rabrol26@gmail.com, ORCID ID: 0009-0003-7400-0951 

© The Authors. Published by Lattice Science Publication (LSP). This is 

an open access article under the CC-BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/) 

 limiting their coverage to specific locations [4]. 

This constraint hinders comprehensive air pollution 

monitoring, particularly in regions with inadequate 

infrastructure [5]. With advancements in artificial 

intelligence (AI) and machine learning (ML), data-driven 

approaches are emerging as powerful alternatives to 

conventional monitoring methods [6]. 

Virtual monitoring stations, powered by AI, can analyse 

historical pollution data, detect anomalies, and predict air 

quality trends with high accuracy, offering a scalable and 

cost-effective solution [7]. This study presents a machine 

learning-based anomaly detection framework to enhance air 

quality assessment [8]. It employs four distinct approaches: 

Z-score, which identifies statistical outliers in pollution

levels [9]; Isolation Forest, an ensemble learning technique

that isolates anomalies efficiently [10]; Autoencoders, a deep

learning model that learns normal pollution patterns and

detects deviations [11]; and Long Short-Term Memory

(LSTM) networks, which forecast future pollution trends

while flagging unexpected spikes [12].

By integrating these methods, the proposed system 

improves air quality analysis, facilitating early warnings and 

proactive environmental management [13]. The research 

aims to bridge the gap between traditional monitoring 

stations and AI-driven virtual alternatives, demonstrating 

how machine learning can enhance pollution tracking and 

anomaly detection [14]. The findings could help 

policymakers, environmental agencies, and researchers 

implement more effective pollution control strategies, 

ensuring cleaner air and healthier communities [15]. 

II. MATERIALS AND METHODS

A. Data Collection and Preprocessing

To analyse air pollution anomalies, a comprehensive

dataset containing air quality measurements was collected 

[1]. The dataset includes key pollutant concentrations such as 

PM2.5, PM10, NO₂, CO, SO₂, and O₃, along with 

meteorological parameters like temperature, humidity, and 

wind speed [2]. The raw data was pre-processed by handling 

missing values, normalizing the features, and removing 

duplicate records to ensure consistency and accuracy [3]. 

B. Anomaly Detection Approaches

To identify pollution anomalies, multiple machine learning

techniques were implemented: Z-score, Isolation Forest, 

Autoencoders, and LSTM networks. Each approach provides 

a unique methodology to detect deviations from normal 

pollution levels [4]. 

i. Z-score-Based Anomaly Detection

The Z-score method is a

statistical approach that 

standardizes pollutant 

concentration values to 

https://doi.org/10.54105/ijainn.C1098.05030425
https://doi.org/10.54105/ijainn.C1098.05030425
http://www.ijainn.latticescipub.com/
mailto:rabrol26@gmail.com
https://orcid.org/0009-0003-7400-0951
https://www.openaccess.nl/en/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.54105/ijainn.C1098.05030425&domain=www.ijainn.latticescipub.com


 

AI-Powered Anomaly Detection in Air Pollution for Smart Environmental Monitoring 

                                      2 

Published By: 

Lattice Science Publication (LSP) 
© Copyright: All rights reserved. 

 

Retrieval Number: 100.1/ijainn.C109805030425 

DOI: 10.54105/ijainn.C1098.05030425 
Journal Website: www.ijainn.latticescipub.com 

 

 

determine their deviation from the mean [5]. Given a 

pollution metric XXX, its Z-score is calculated as: 

Z=X−μσZ = \frac{X - \mu}{\sigma}Z=σX−μ  

where μ\muμ is the mean and σ\sigma is the standard 

deviation. A threshold (e.g., ∣Z∣>3|Z| > 3∣Z∣>3) was used to 

classify extreme pollution values as anomalies [6]. 

ii. Isolation Forest-Based Anomaly Detection 

The Isolation Forest is an unsupervised learning algorithm 

that isolates outliers by recursively partitioning the dataset 

[7]. It builds a set of decision trees where anomalies require 

fewer splits to be isolated. The model assigns an anomaly 

score to each data point, and those exceeding a predefined 

threshold are marked as anomalies [8]. 

Steps: 

▪ Train the Isolation Forest model using pollutant 

concentrations. 

▪ Compute anomaly scores for each observation. 

▪ Set a threshold based on percentile values to flag 

anomalies. 

iii. Autoencoder-Based Anomaly Detection 

Autoencoders, a deep learning technique, are used to 

reconstruct normal pollution patterns and detect deviations 

[9]. The model consists of an encoder that compresses input 

data into a latent space and a decoder that reconstructs it. 

High reconstruction error indicates anomalies [10]. 

Process: 

▪ Train an autoencoder with normal pollution data. 

▪ Compute reconstruction loss using Mean Squared Error 

(MSE): 

MSE=1n∑i=1n(Xi−X^i)2MSE = \frac{1}{n} 

\sum_{i=1}^{n} (X_i - \hat{X}_i)^2MSE=n1i=1∑n(Xi−X^i

)2  

▪ Define a loss threshold beyond which observations are 

flagged as anomalies. 

iv. LSTM-Based Anomaly Detection 

Long Short-Term Memory (LSTM) networks, a type of 

recurrent neural network (RNN), predict future pollution 

levels based on historical data [11]. The deviation between 

predicted and actual values is analysed to detect anomalies 

[12]. 

Procedure: 

▪ Train an LSTM model using time-series air pollution 

data. 

▪ Predict future pollutant levels and compute prediction 

errors. 

▪ Identify anomalies where the error exceeds a set 

threshold. 

v. Model Evaluation and Interpretation 

The performance of anomaly detection models was 

assessed using precision, recall, and F1-score [13]. 

Additionally, visual inspection of anomalies was conducted 

using time-series plots to validate detected pollution spikes 

[14]. The effectiveness of each method was compared to 

determine the most suitable approach for real-time air quality 

monitoring [15]. 

By integrating these machine learning techniques, the study 

provides an alternative to traditional monitoring stations, 

allowing for early detection of pollution anomalies and 

improved environmental decision-making [16]. 

III. RESULTS AND DISCUSSION 

A. Overview of Anomaly Detection Approaches 

This study implemented multiple machine learning 

techniques to identify anomalies in air pollution data. The 

four approaches—Z-score, Isolation Forest, Autoencoders, 

and Long Short-Term Memory (LSTM)—were utilized to 

detect abnormal pollutant levels based on historical air 

quality data [4]. Each method provided unique insights into 

pollution patterns, with varying sensitivity to different types 

of anomalies [6]. The combination of statistical, ensemble, 

deep learning, and time-series approaches ensured a 

comprehensive analysis of both abrupt and gradual changes 

in pollution levels [9]. 

B. Z-score Based Anomaly Detection 

The Z-score approach served as a statistical baseline to 

detect deviations in pollutant concentrations [5]. By 

standardizing the dataset and setting a threshold (e.g., 

∣Z∣>3|Z| > 3∣Z∣>3), anomalies were flagged when pollutant 

levels exceeded a predefined standard deviation. The method 

effectively captured extreme outliers, particularly in 

pollutants like PM2.5 and NO₂, where sudden spikes were 

observed [6]. However, the Z-score method struggled to 

detect subtle, temporally dependent anomalies, limiting its 

effectiveness in identifying gradual air quality deterioration 

[11]. Additionally, this method assumes a normal distribution 

of data, which may not always be valid in real-world 

pollution datasets [15]. 

 

 

[Fig.1: Time Series of Air Pollutants in Delhi (Jan 2023)] 

C. Isolation Forest Results 

Isolation Forest, an unsupervised learning technique, was 

applied to identify anomalous air pollution levels by isolating 

data points that differed significantly from the majority [7]. 

The results demonstrated that the method was particularly 

effective in identifying abrupt changes in pollution levels,  

such as sudden increases in CO or SO₂ concentrations due to 

industrial emissions [8]. The  

algorithm efficiently detected   

these anomalies with minimal 

computational overhead, 
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making it suitable for real-time applications in environmental 

monitoring systems [10]. However, a limitation of this 

approach was its reliance on tree-based partitioning, which 

might not be as effective for detecting subtle variations in air 

pollution trends that evolve gradually over time [15]. 

 

 

[Fig.2: PM2.5 Anomaly Detection (Isolation Forest)] 

D. Autoencoder-Based Anomaly Detection 

The deep learning-based Autoencoder model was trained to 

learn normal pollution patterns and flag deviations that did 

not conform to expected behaviour [11]. This technique was 

highly effective in detecting both abrupt and gradual changes 

in pollutant levels [12]. Unlike statistical methods, 

Autoencoders captured complex relationships between 

multiple pollutants, allowing for a more holistic 

understanding of air quality anomalies [14]. The 

reconstruction error metric served as a reliable threshold for 

anomaly detection. A significant advantage of this approach 

was its adaptability to nonlinear pollution patterns [16]. 

However, the performance was influenced by the choice of 

hyperparameters, requiring fine-tuning to minimize false 

positives and false negatives [17]. Additionally, deep 

learning models demand substantial computational 

resources, making real-time implementation more 

challenging compared to traditional anomaly detection 

methods [18]. 

 

 

[Fig.3: Air Quality Anomaly Detection using Autoencoders] 

E. LSTM-Based Anomaly Detection 

The LSTM model, a recurrent neural network (RNN) 

variant, was employed to predict future air quality levels and 

detect unexpected deviations [19]. By leveraging sequential 

dependencies in time-series data, LSTM effectively 

identified pollution anomalies resulting from unusual trends 

in AQI [20]. The model’s predictive capabilities enabled the 

anticipation of air quality degradation before it became 

critical [21]. The results indicated that LSTM was 

particularly useful for detecting anomalies caused by gradual 

environmental shifts, such as seasonal variations or changes 

in emission patterns [22]. However, like Autoencoders, 

LSTM required extensive training data and computational 

resources [23]. Additionally, ensuring the reliability of long-

term predictions remained a challenge, as minor variations in 

initial conditions could lead to significant differences in 

anomaly detection outcomes [24]. 

 

 

[Fig.4: AQI Prediction using LSTM] 

F. Comparative Analysis of Methods 

i. Comparative Analysis of Anomaly Detection Models 

A comparative analysis was conducted to evaluate the 

effectiveness of each method based on precision, recall, 

computational efficiency, and suitability for real-time 

monitoring [12]. The findings can be summarized as follows: 

▪ Z-score: Simple and effective for extreme outliers, 

particularly useful for detecting sudden spikes in 

pollutants like PM2.5 or NO₂ [7]. However, it is less 

reliable for capturing complex or time-dependent 

anomalies and assumes data normality [9]. 

▪ Isolation Forest: Computationally efficient and 

effective for identifying abrupt pollution spikes (e.g., 

from industrial activities), but it struggles with subtle or 

gradual variations over time [10]. 

▪ Autoencoder: Well-suited for capturing nonlinear 

dependencies between pollutants and detecting both 

sudden and gradual deviations [17]. However, the 

model requires fine-tuning of hyperparameters to 

reduce false positives and is resource-intensive [18]. 

▪ LSTM: Excels in time-series forecasting and anomaly 

detection by learning long-term dependencies in 

pollution trends, making it valuable for anticipating 

environmental shifts [19]. Despite this, LSTM requires 

extensive training data and high computational power 

[23]. 

G. Implications for Virtual Monitoring Stations 

The results suggest that integrating multiple anomaly 

detection methods can improve the reliability of virtual air 

pollution monitoring stations [25]. While traditional physical 

monitoring stations provide valuable real-time data, they are 

limited by coverage constraints and maintenance costs [1]. 

Machine learning models enable scalable [26], cost-effective 

alternatives by processing historical data and identifying 

trends or anomalies in real time [3]. These virtual stations can 

complement physical infrastructure and facilitate broader 

surveillance across under-

monitored regions [27]. The 

study also emphasizes the 

need for adaptive frameworks 
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capable of adjusting dynamically to evolving pollution 

patterns [5]. 

H. Limitations and Future Work 

While this study demonstrated the effectiveness of various 

anomaly detection techniques, several challenges remain. 

First, model accuracy depends heavily on data quality and 

completeness—missing values or noisy sensor readings can 

significantly degrade performance [6]. Second, 

implementing virtual monitoring systems in real-world 

settings requires robust validation across diverse 

geographical and environmental contexts [8]. Future work 

should explore hybrid models that combine the strengths of 

statistical, machine learning, and deep learning approaches to 

increase reliability and reduce false alarms [11]. 

Incorporating explainable AI (XAI) tools can also enhance 

transparency and trust, aiding decision-making by 

environmental stakeholders and policymakers [24]. 

IV. CONCLUSION 

This study examined multiple machine learning 

techniques—Z-score, Isolation Forest, Autoencoders, and 

Long Short-Term Memory (LSTM) networks—for anomaly 

detection in air pollution data. The primary objective was to 

identify abnormal pollution patterns that could indicate 

environmental risks, equipment malfunctions, or unforeseen 

changes in emission sources. Each method offered distinct 

advantages, contributing complementary insights into air 

quality fluctuations. 

The Z-score method, a statistical baseline, was effective in 

flagging extreme outliers in pollutant levels (e.g., PM2.5 and 

NO₂) using a simple and interpretable framework [7]. 

Isolation Forest, an unsupervised learning algorithm, showed 

high efficacy in identifying abrupt pollution spikes due to its 

tree-based isolation mechanism and computational efficiency 

[10]. The Autoencoder model demonstrated robust 

performance by learning the latent structure of normal 

pollution patterns and detecting deviations through 

reconstruction error, offering strong adaptability to nonlinear 

pollutant interactions [17]. LSTM, with its sequence 

modelling capability, accurately captured temporal 

dependencies and predicted future AQI trends, making it 

highly suitable for proactive anomaly detection in time-series 

data [20]. 

The comparative results suggest that no single method is 

universally superior; rather, a hybrid approach that combines 

statistical, machine learning, and deep learning techniques 

may yield a more comprehensive and resilient anomaly 

detection system. While Z-score provides simplicity and 

quick deployment, models like Isolation Forest and 

Autoencoders offer better scalability and robustness. LSTM 

adds forecasting power, enabling anticipatory actions in air 

quality management. 

These findings support the development of virtual 

monitoring stations powered by machine learning, which can 

supplement traditional sensor-based infrastructure. Such 

systems enable broader, more cost-effective surveillance of 

air pollution, especially in regions with sparse monitoring 

coverage [25]. 

Future work should aim to enhance model accuracy by 

integrating contextual factors such as meteorological data, 

traffic patterns [28], and seasonal variations [6]. Real-time 

implementation within smart city platforms could 

significantly improve environmental governance and public 

health interventions. Furthermore, incorporating explainable 

AI (XAI) would foster greater transparency and trust [29], 

allowing policymakers to interpret and act on detected 

anomalies more confidently [24]. 

In summary, this research highlights the transformative 

potential of machine learning in advancing air pollution 

monitoring. By combining diverse detection strategies, we 

can build more intelligent, adaptive, and data-driven 

environmental monitoring systems to safeguard public health 

and support sustainable urban development. 
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