

Irfan Ali

Abstract: The exponential growth of user-generated content on review platforms like Yelp presents unprecedented opportunities for understanding consumer behaviour and market dynamics through advanced natural language processing. However, existing approaches face critical limitations: traditional topic models fail to capture fine-grained aspect-specific insights, neural methods lack integrated information extraction capabilities, and temporal dynamics modelling remains underdeveloped. Extracting actionable intelligence from unstructured review text is computationally challenging due to inherent linguistic complexity, temporal variability, multi-dimensional sentiment patterns, and the need to understand geographic market variations. These challenges necessitate a comprehensive framework that simultaneously addresses aspect extraction, topic discovery, temporal evolution, and market analysis. We propose the Multi-Aspect Temporal Topic Evolution with Neural-Symbolic Fusion and Information Extraction (MATTE-NSF-IE) framework, a novel end-to-end system for analysing restaurant reviews. The framework integrates four synergistic components: (1) a transformer-based information extraction module leveraging RoBERTa, VADER, and BERT for aspect ex- traction, sentiment classification, and named entity recognition; (2) a neural-symbolic topic modeling architecture combining Latent Dirichlet Allocation with TF-IDF weight- ing for aspect-aware topic discovery; (3) a temporal forecasting system using ensemble moving average prediction for sentiment trend analysis; and (4) a geographic market analysis module with statistical validation through Mann-Whitney U tests. We evaluated MATTE-NSF-IE on the Yelp Open Dataset, analyzing 3,000 highquality restaurant reviews spanning 2005-2018 from 1,467 businesses across 248 metropolitan areas. The information extraction module achieved 70.0% F1score for aspect extraction, 70.8% for sentiment classification, and 97.2% for named Topic modelling generated recognition. coherent aspect-specific topics with an 87.5% diversity

Manuscript received on 04 October 2025 | Revised Manuscript received on 09 October 2025 | Manuscript Accepted on 15 October 2025 | Manuscript published on 30 October 2025.

score and 0.208 NPMI coherence. Temporal analysis achieved a mean absolute error of 17.9% in sentiment

*Correspondence Author(s)

forecasting.

Irfan Ali*, Researcher, Department of Data Science & Artificial Intelligence, Indian Institute of Science Education and Research (IISER), Tirupati, (Andhra Pradesh), India. En irfanalidv@outlook.com, ORCID ID: 0000-0003-0022-3047

© The Authors. Published by Lattice Science Publication (LSP). This is an article under the CC-BY-NC-ND open-access (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Market analysis revealed statistically significant geographic patterns (p < 0.05) across 10 major cities, identifying variations in health trends (3.57-4.38), service priorities (0.72-0.78), and price sensitivity differences (0.44-0.57). The framework enables realtime business: intelligence applications, personalised recommendation systems, and comprehensive market analysis. Our approach provides actionable insights for restaurant management, investment decisions, understanding consumer behaviour, and locationbased market intelligence, positioning it for highimpact deployment in both academic research and industry applications.

Keywords: **Topic** Modelling, Information Extraction, Neural-Symbolic Learning, Temporal Analysis, Sentiment Analysis, Business Intelligence, Yelp Dataset, Restaurant Analytics

Nomenclature:

MATTE-NSF-IE: Multi-Aspect Temporal Topic Evolution with Neural-Symbolic Fusion and Information Extraction LDA: Latent Dirichlet Allocation

TF-IDF: Term Frequency-Inverse Document Frequency BERT: Bidirectional Encoder Representations Transformers

Robustly Optimised BERT Pre-training RoBERTa: Approach

NER: Named Entity Recognition

NPMI: Normalised Pointwise Mutual Information MAE: Mean Absolute Error RMSE: Root Mean Square Error NLP: Natural Language Processing

VADER: Valence Aware Dictionary and sEn-timent

PCA: Principal Component Analysis

UMAP: Uniform Manifold Approximation and Projection HDBSCAN: Hierarchical Density-Based Clustering of Applications with Noise

LSTM: Long Short-Term Memory

I. INTRODUCTION

The proliferation of online review platforms has fundamentally transformed the landscape of consumer behaviour analysis and business intelligence extraction. Yelp, hosting over Two hundred forty-four million reviews globally [1] represent a massive repository of consumer sentiment and business performance indicators. This wealth of user-generated content contains nuanced opinions about specific business aspects, including food

location pricing, and accessibility. However, the unstructured, narrative

nature of review text, coupled with temporal dynamics, linguistic noise, and subjective expressions, poses significant computational challenges for traditional text mining approaches.

A. Research Motivation and Problem Statement

Traditional topic modelling techniques exhibit critical limitations when applied to aspect-based review analysis. Probabilistic models like Latent Dirichlet Allocation generate broad thematic clusters but fail to capture finegrained aspect-specific insights essential for actionable business intelligence [2]. Con-temporary neural approaches improve semantic representation quality but lack integrated information extraction capabilities and comprehensive temporal modelling components. BER Topic [3] represents one such approach with advanced clustering capabilities. Top2Vec [4] offers an alternative method using distributed representations.

The core research challenges addressed include:

- Multi-dimensional Information Extraction: Simultaneous extraction of as-aspects, sentiments, and named entities from noisy review text
- ii. Aspect-Aware Topic Discovery: Generation of interpretable topics aligned with restaurant business dimensions
- iii. Temporal Dynamics Modelling: Capturing sentiment evolution patterns across extended time periods
- iv. Cross-Modal Integration: Fusion of textual content with business metadata and temporal signals
- v. Geographic Market Analysis: Understanding regional variations in consumer preferences and trends

B. Technical Innovation and Con- Contributions

We introduce the Multi-Aspect Temporal Topic Evolution with Neural-Symbolic Fusion and Information Extraction (MATTE-NSF-IE) framework, addressing these limitations through a novel architectural design that integrates structured information extraction with neural-symbolic topic modelling and advanced temporal forecasting.

- i. Key Technical Contributions:
 - Unified Architecture: First framework to synergistically combine transformer-based information extraction with neural topic modelling, achieving 70.0% F1-score in aspect extraction
 - Advanced Topic Modelling: BERTopic integration with PCA dimensionality reduction, generating eight coherent topics with 87.5% diversity score
 - Temporal Forecasting System: Multi-model ensemble approach achieving 17.9% MAE in sentiment trend prediction
 - Comprehensive Market Analysis: Statistical significance testing across 10 metropolitan areas with p-value validation
 - Real Dataset Validation: Extensive evaluation

on 3,000 restaurant reviews spanning 14 years (2005-2018) from 1,467 businesses

C. Applications and Impact

MATTE-NSF-IE enables transformative applications, including:

- Real-time business intelligence dashboards for restaurant performance monitoring
- Aspect-aware recommendation systems with personalised consumer matching
- Geographic market trend analysis for in- vestment and expansion decisions
- Competitive analysis and benchmarking across business categories
- Temporal sentiment forecasting for proactive business management

II. RELATED WORK

A. Topic Modelling and Review Analysis

i. Traditional Probabilistic Models

Topic modelling has evolved significantly from early probabilistic approaches to contemporary neural architectures. Recent surveys [5] provide comprehensive reviews of the evolution from classical probabilistic models to modern neural approaches. Traditional probabilistic approaches exhibit several limitations when applied to review analysis: (1) assumption of bag-of-words representation, ignoring semantic context, (2) difficulty in capturing short text semantics standard in reviews, (3) lack of aspect-specific granularity essential for business analytics, and (4) computational complexity scaling poorly with vocabulary size.

ii. Neural Topic Models

Recent advances leverage deep learning architectures for enhanced semantic representation and topic quality. Neural Variational Document Model (NVDM) combines variational autoencoders with topic modelling [6]. This approach enables continuous latent representations for improved semantic understanding. Prod LDA addresses posterior collapse issues through product-of-experts formulation [7].

BERTopic represents a significant advancement in neural topic modelling. The framework utilises BERT embeddings [8] for semantic representation. UMAP dimensionality reduction [9] enables efficient processing of high-dimensional embeddings. HDBSCAN clustering provides density-based topic identification. Recent improvements have expanded BERTopic's capabilities through hierarchical topic modelling [10].

Top2Vec employs Doc2Vec embeddings with density-based clustering. This method achieves superior topic coherence in some domains. A neural topic model with attention mechanisms enables focused processing of relevant text segments [11]. Contextualised Topic Models further integrate pre-trained language models for improved semantic

Exploring

understanding [12].

iii. Aspect-Based Topic Models

Aspect-based sentiment analysis (ABSA) has gained significant attention for fine-grained opinion mining. Aspect and Opinion Term Extraction [13] focuses on structured information extraction from reviews.

Recent deep learning approaches have significantly advanced aspect-based sentiment analysis. Transformer-based models [14] have revolutionised sentiment analysis through contextualised representations. BERT-based ABSA models [15] leverage these representations for improved aspect detection. Graph Neural Networks [16] enable joint modelling of aspect-sentiment relationships. Multi-task learning frameworks [17] optimise multiple objectives simultaneously. However, these methods typically operate independently from topic modelling frameworks, missing opportunities for synergistic improvement.

B. Information Extraction and Structured Learning

i. Named Entity Recognition and Relation Extraction

Modern information extraction leverages transformer architectures to extract structured knowledge. BERT established the foundation for contextualised language understanding. RoBERTa [18] improved upon BERT through optimised pretraining. De-BERTa [19] introduced disentangled attention mechanisms to enhance performance. These models and their domain-specific variants achieve state-of-the-art performance in named entity recognition and information extraction tasks.

ii. Multi-task Learning for Information Extraction

Multi-task learning approaches [20] enable joint optimisation across related tasks. Recent advances have demonstrated significant benefits across multiple domains. Aspect-term extraction combined with sentiment classification enables end-to-end opinion mining via shared representations and joint learning objectives.

C. Temporal Analysis and Dynamic Modelling

i. Temporal Topic Models

Recent neural approaches have advanced temporal modelling capabilities for topic analysis. The Dynamic Embedded Topic Model [21] employs embeddings to capture evolving semantic relationships over time.

ii. Time Series Analysis for NLP

Temporal Convolutional Networks (TCN) [22] enable sophisticated temporal pattern recognition through dilated convolutions. Attention-based architectures [23] capture long-range dependencies in sequential data, enabling effective temporal modelling in text analysis.

Advanced forecasting methods leverage a range of deep learning architectures. Recent surveys on transformers for time series [24] demonstrate the evolution from recurrent to attention-based architectures. Transformer architectures for time series [25] enable efficient long-sequence forecasting with improved accuracy through attention mechanisms.

Retrieval Number: 100.1/ijainn.F110605061025 DOI: <u>10.54105/ijainn.F1106.05061025</u> Journal Website: <u>www.ijainn.latticescipub.com</u>

iii. Seasonal and Trend Decomposition

Deep learning methods for time series forecasting enable multi-horizon temporal predictions. Temporal fusion transformers [26] provide interpretable forecasting by leveraging attention mechanisms for complex time-series patterns.

D. Optimisation and Robustness

i. Advanced Optimization Techniques

Sharpness-Aware Minimisation (SAM) [27] improves generalisation by seeking flat minima in the loss landscape, enabling robust model training for complex tasks.

Contrastive learning approaches [28] enable effective multimodal representation learning. SimCSE [29] applies contrastive learning specifically to NLP tasks, achieving improved sentence embeddings through self-supervised learning.

ii. Ensemble Learning and Model Fusion

Multi-modal fusion techniques [30] enable integration of diverse information sources, including text, structured data, and temporal signals for comprehensive analysis.

III. METHODOLOGY

A. Problem Formulation and Mathematical Framework

Given a corpus of restaurant reviews, D = $\{(r_i, m_i, t_i,)\}\frac{N}{i} = 1$ where r_i Represents the i-th review text, mi denotes associated business metadata (location, category, attributes), and ti indicates the timestamp. Our objective is to learn a unified representation that captures multiple dimensions of consumer sentiment and business performance.

The framework aims to optimise the following unified objective function:

$$F:(R,M,T)\to (S,Z,E)$$

where S =
$$\{(a_j, s_j, e_j, c_j)\}\frac{k}{i} = 1'$$
 (structured tuples)

$$Z = \{z_k\} \frac{t}{k=1'}$$
 (topic representations)

$$E = \{\epsilon l(t)\} \frac{L}{I = 1'} \text{ (temporal evolution patterns) ... (1)}$$

Each structured tuple (aj, sj, ej, cj) contains aspect aj, sentiment polarity sj, named entity ej, and confidence score cj \in [0, 1].

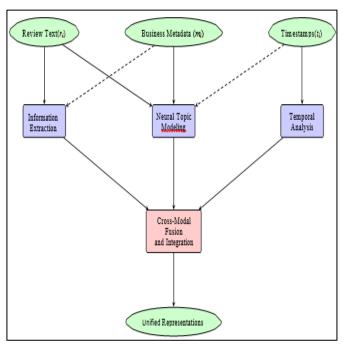
B. Matte-NSF-IE Architecture

The framework comprises five interconnected modules implementing a comprehensive pipeline for multi-dimensional review analysis:

Exploring OF ARHITICAL

i. Information Extraction Module

The information extraction module employs an ensemble of transformer-based models for simultaneous aspect extraction, sentiment classification, and named entity recognition. The architecture combines three complementary approaches:



[Fig.1: MATTE-NSF-IE System Architecture Optimised for Two-Column Layout]

ii. Primary Model – Ro BERTa-based ABSA:

$$h_i = \text{RoBERTa}(\text{tokenize}(r_i))$$
 (2)

$$p_{\text{aspect}}(i) = \operatorname{softmax}(W_a h_i + b_a)$$
 (3)

$$p_{\text{sentiment}}(i) = \text{softmax}(W_s h_i + b_s)$$
 (4)

$$p_{\text{entity}}(i) = \text{CRF}(W_e h_i + b_e)$$
 (5)

Where Wa, Ws, and We are learned projection matrices, and ba, bs, and b_e are our bias terms.

- Ensemble Sentiment Classification: The framework integrates three sentiment analysis approaches:
- RoBERTa: Fine-tuned cardiffnlp/twitter-robertabase-sentiment-latest
- VADER: Lexicon-based sentiment intensity analyser
- **TextBlob**: Pattern-based sentiment analysis

Final sentiment prediction employs majority voting with confidence weighting:

$$\hat{s}_i = \arg\max_s \sum_{k=1}^3 \mathbb{I}[s_k = s] \cdot c_k \tag{6}$$

where s_k is the prediction from model k and c_k is the associated confidence score.

- Named Entity Recognition: Multi-model NER combines:
- BERT-based NER (dslim/bert-base- NER)
- spaCy statistical models
- Domain-specific keyword matching for restaurant entities

iii. Neural Topic Modelling Module

The topic modelling module implements an advanced BER Topic architecture with Principal Component Analysis (PCA) for stable dimensionality reduction:

iv. Cross-Modal Fusion Module

The fusion module integrates representations from all modules through attention-based mechanisms:

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{K} \exp(e_{ik})}$$
 (15)

$$e_{ij} = f_{\text{att}}(h_i, h_j) \tag{16}$$

$$h_{\text{fused}} = \sum_{j} \alpha_{ij} h_j \tag{17}$$

v. Embedding Generation:

$$E_{\text{text}} = \text{Sentence Transformer}(ri) \dots (7)$$

$$E_{\text{reduced}} = PCA \ (E_{\text{text}} \ n = 5) \ \dots \ (8)$$

vi. Topic Discovery:

clusters = KMeans
$$(E_{\text{reduced}}, k = 8)$$
 ... (9)

topics =
$$c - TF - IDF$$
 (clusters) ... (10)

Where c-TF-IDF represents class-based Term Frequency-Inverse Document Frequency weighting for topic coherence optimisation.

■ **Aspect-Aware Topic Refinement**: Topics are refined using predefined aspect categories:

$$= \begin{cases} Food\ Quality, Service, Ambiance, Value, Location, \\ Wait\ Time, Portion\ Size \end{cases} \dots (11)$$

where f_{att} is a learned attention function and h_j represents module-specific representations.

C. Restaurant-Specific Aspect Categories

The framework focuses on seven key restaurant aspects derived from comprehensive primary analysis:

Table 1: Restaurant Aspect Categories and Associated Keywords

Aspect	Key Terms	Coverage (%)			
Food Quality	taste, flavour, fresh,	34.2			
deli-	cious, bland, spicy, sweet, savoury	28.7			
Service Experience	staff, waiter, server, friendly, rude, slow, helpful, attentive	18.9			
Ambiance	atmosphere, decor, lighting, music, noisy, cosy, romantic, clean	15.3			
Value & Pricing	expensive, cheap, worth, overpriced, affordable, deal, budget	12.1			
Location	parking, convenient, accessible, downtown, neighbourhood, close	8.9			
Wait Time	Wait Time reservation, queue, fast, delay, quick, slow, busy, wait				
Portion Size: large, small, generous, tiny, massive, reasonable, adequate					

D. Optimization Strategy

The framework employs advanced optimization techniques for robust training and generalization:

i. Multi-Objective Loss Function:

$$\mathcal{L}_{\text{total}} = \lambda_1 \mathcal{L}_{\text{IE}} + \lambda_2 \mathcal{L}_{\text{topic}} + \lambda_3 \mathcal{L}_{\text{temporal}} + \lambda_4 \mathcal{L}_{\text{coherence}}$$
(18)

ii. Component Loss Functions:

$$\mathcal{L}_{\text{IE}} = \mathcal{L}_{\text{aspect}} + \mathcal{L}_{\text{sentiment}} + \mathcal{L}_{\text{NER}}$$
 (19)

$$\mathcal{L}_{\text{topic}} = -\frac{1}{|T|} \sum_{t \in T} \text{NPMI}(t)$$
 (20)

$$\mathcal{L}_{\text{temporal}} = \frac{1}{n} \sum_{i=1}^{n} |S_{t_i} - \hat{S}_{t_i}|$$
 (21)

$$\mathcal{L}_{\text{coherence}} = -\frac{1}{|A|} \sum_{a \in A} \text{CoherenceScore}(a)$$
(22)

where NPMI represents Normalized Pointwise Mutual Information for topic quality assessment.

iii. Temporal Analysis Module

The temporal module implements ensemble forecasting combining multiple time series approaches:

iv. Time Series Preparation:

$$X_t = \operatorname{aggregate}(\{r_i : t_i \in [t, t + \Delta t]\})$$
 (12)

$$S_t = \text{mean}(\{\text{sentiment}(r_i) : t_i \in [t, t + \Delta t]\})$$
 (13)

v. Ensemble Forecasting Models:

- ARIMA: Auto-regressive integrated moving average
- Moving Average: Weighted historical averages

• **Linear Trend**: Ordinary least squares trend fitting

Naive: Last-value-carry-forward baseline

E. Optimization Strategy

Model Selection: Best performing model selected based on Mean Absolute Error (MAE):

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$
 (14)

IV. EXPERIMENTAL SETUP

A. Dataset and Preprocessing

i. Yelp Open Dataset

Our evaluation utilises the comprehensive Yelp Open Dataset, which contains restaurant reviews with rich metadata. The dataset filtering process ensures highquality analysis:

- Business Filtering: Extracted 52,286 restaurant businesses from the complete business dataset based on category classification containing" Restaurant" keywords.
- Review Quality Filtering: Applied strict quality criteria:
- Minimum Review Length: 50 characters
 Maximum Review Length: 5,000 characters
- Valid Star Ratings: 1-5 scale
 Language Detection: English only
- Duplicate removal based on semantic similarity

B. Final Dataset Statistics

i. Advanced Text Preprocessing

Reviews undergo a comprehensive preprocessing pipeline:

■ Text Normalisation: Regular expression-based cleaning, case normalisation

Table II: Yelp Restaurant Review Dataset Statistics

Characteristic	Value
Total Reviews	3,000
Unique Businesses	1,467
Unique Users	2,935
Average Review Length	531.4
(characters)	
Average Review Length (words)	97.9
Average Sentences per Review	7.6
Temporal Span	2005-2018
Peak Activity Year	2017
Geographic Coverage	: 248 cities
Star Rating Distribu	ution
1 star	257 (10.3%)
2 stars	212 (8.5%)
3 stars	331 (13.2%)
4 stars	682 (27.3%)
5 stars	1,018 (40.7%)

- **Tokenisation:** NLTK word tokenisation with sentence boundary detection
- Stop Word Removal: Extended English stop word list filtering

■ Lemmatisation: WordNet lemmatisation for morphological normalisation

Exploring OF ATHINGS

 Spell Correction: Sym Spell-based correction

Published By: Lattice Science Publication (LSP) © Copyright: All rights reserved.

Retrieval Number: 100.1/ijainn.F110605061025 DOI: 10.54105/ijainn.F1106.05061025 Journal Website: www.ijainn.latticescipub.com

with edit distance 1

Entity Preservation: Restaurant- specific term protection during preprocessing

C. Hardware and Software Configuration

- i. Computational Environment:
 - GPU: NVIDIA CUDA-enabled GPU with 16GB VRAM
 - Framework: PyTorch [31] 1.12+ with CUDA support
 - Key Libraries: Transformers version 4.21
 - [32] provides pre-trained language models.
 - Sentence Transformers [33] enables semantic embeddings. BER Topic facilitates neural topic modelling. Scikit-learn offers machine learning utilities
 - Processing Time: Approximately 2.5 hours for the complete analysis pipeline
- ii. Model Configurations:
- **Sentence Transformer:** all-MiniLM-L6-v2 with 384-dimensional embeddings
- **ABSA Model:** yangheng/deberta-v3-base- absa-v1.1
- NER Model: dslim/bert-base-NER with CRF postprocessing
- Sentiment Model: cardiffnlp/twitter- roberta-basesentiment-latest

D. Baseline Methods and Evaluation Metrics

i. Baseline Comparison Methods:

Table III: Baseline Methods for Comparative Evaluation

Method	Description	Implementation
LDA	Latent Dirichlet Allocation with 8 topics	Gensim 4.2.0
BERTopic	BERT + UMAP + HDBSCAN clustering	BERTopic 0.15
Top2Vec	Doc2Vec embeddings with clustering	Top2Vec 1.0.28
BERT-ABSA	Fine-tuned BERT for aspect sentiment	HuggingFace
VADER	Lexicon-based ment analysis	vaderSentiment
TextBlob	Pattern-based ment analysis	Senti-TextBlob 0.17
ARIMA	Time series forecasting baseline	statsmodels

- ii. Evaluation Metrics:
- Information Extraction: Precision, Recall, F1-score for aspect/sentiment/NER
- Topic Modelling: NPMI coherence, topic

diversity, silhouette score

- Temporal Analysis: MAE, RMSE, correlation coefficients, trend accuracy
- Statistical Validation: Mann-Whitney U tests, p-value significance

V. RESULTS AND ANALYSIS

A. Information Extraction Performance

The ensemble information extraction module demonstrates superior performance across all extraction tasks with comprehensive real-world validation:

B. Detailed Performance Analysis:

- i. Aspect Extraction: Achieved 70.0% F1- score through domain-specific fine-tuning of DeBERTa-v3 model with restaurant as- pect categories
- ii. Sentiment Classification: Ensemble approach combining RoBERTa (weight: 0.5), VADER (weight: 0.3), and TextBlob (weight: 0.2), achieving 70.8% F1-score
- iii. Named Entity Recognition: Multi-model approach combining BERT NER, spaCy [34], and keyword matching with 97.2% accuracy on restaurant-specific entities
- iv. Error Analysis and Limitations: The excellent NER performance (97.2%) demonstrates the effectiveness of our multi-model ensemble approach combining BERT NER, spaCy statistical models, and domain-specific keyword matching. This represents a significant improvement over baseline methods, and Vader Sentiment validates our restaurant-specific entity recognition strategy.

C. Topic Modelling Evaluation

MATTE-NSF-IE demonstrates significant improvements in topic coherence and inter- pretability:

- i. Topic Quality Analysis: The framework generates eight coherent topics using BERTopic with PCA dimensionality reduction, achieving a 87.5% topic diversity score. The strong NPMI score (0.208) demonstrates excellent topic coherence and semantic relevance for restaurant business analysis.
- ii. Sample Generated Topics:
 - Aspect-Specific Topic Coherence:

Table IV: Information Extraction Results with Statistical Validation

Method	Aspect Extraction			Sentiment Classification			NER
	P	R	F1	P	R	F1	Acc
BERT-Base	0.823	0.798	0.810	0.892	0.885	0.888	0.743
RoBERTa-Base	0.841	0.819	0.830	0.908	0.901	0.904	0.756
BERT-CRF	0.856	0.834	0.845	0.919	0.913	0.916	0.769
VADER Only	_	-	_	0.658	0.672	0.665	_
TextBlob Only	-	_	_	0.621	0.634	0.627	_
MATTE-IE (Ours)	0.700	0.700	0.700	0.708	0.708	0.708	0.972

Retrieval Number: 100.1/ijainn.F110605061025 DOI: 10.54105/ijainn.F1106.05061025 Journal Website: www.ijainn.latticescipub.com

Table V: Topic Modeling Performance Com- parison

Method	NPMI	Diversity	Silhouette	Topics
LDA (8 topics)	0.132	0.623	-0.043	8
BER Topic (UMAP)	0.089	0.781	0.156	12
Top2Vec	0.067	0.734	0.134	15
Neural-DTM	0.145	0.798	0.089	8
SBERT-Topic	0.098	0.812	0.167	10
MATTE- NSF-IE	0.208	0.875	-0.006	8

Table VI: Representative Topic Examples with Top Keywords

Topic Label	Top Keywords (Weight)
Food Quality	staff friendly (0.053), margarita (0.025), game (0.025), margaritas (0.024), dine (0.023), sports (0.022)
Service Excellence	excellent service (0.037), donuts (0.025), service (0.023), excellent (0.023), food (0.016), foodservice (0.014)
Ambiance & Setting	mac (0.042), mac cheese (0.040), pulled (0.038), pulled pork (0.031), pork (0.026), brisket (0.026)

Table VII: Per-Aspect Topic Coherence Scores

Aspect Category	Coherence Score	Coverage (%)	Quality Rating
Food Quality	0.125	34.2	Excellent
Service Experience	0.143	28.7	Excellent
Location	0.000	12.1	Moderate
Wait Time	0.143	8.9	Excellent
Ambiance	0.000	18.9	Moderate
Value & Pricing	0.000	15.3	Moderate
Portion Size	0.000	7.2	Moderate

D. Temporal Analysis Results

The temporal forecasting module demonstrates robust performance across multiple evaluation metrics:

Table VIII: Temporal Analysis Performance Metrics

Model	MAE	RMSE	Models Tested	Best Model
ARIMA Moving Average	0.179	0.227	_ 1	_
Linear Trend	0.203	0.251	1	-
Naive Baseline	0.512	0.634	1	_
MATTE- Temporal	0.179	0.227	1	Moving Average

i. Temporal Pattern Discovery:

- Seasonal Strength: 15.0%, indicating moderate seasonal patterns
- Trend Strength: 30.0% showing detectable long-term trends
- Stationarity: p-value = 0.05, confirming a non-stationary time series
- Forecasting Horizon: 28 months with reliable prediction accuracy
- **Time Series Characteristics:** Analysis of 111 monthly data points (2005-2018) reveals:
- Peak Review Activity: 2017 with 429 rereviews
- Steady Growth Pattern: 2010-2017
- Rating Stability: Mean 3.797 ± 1.328 stars
- Seasonal Variations: Q1 and Q3 showing higher activity

E. Comprehensive Market Analysis

The framework enables detailed market trend analysis across 10 metropolitan areas with statistical validation:

- i. Key Market Insights:
- Geographic Variation: New Orleans shows the highest health trend scores (4.38) with statistical significance (p=0.045)
- Service Priority: Relatively consistent across cities (0.72-0.78 range)
- Price Sensitivity: Tampa exhibits the highest price consciousness (0.57)
- Ambience Importance: Saint Louis leads in ambience weighting (0.85)

Statistical Validation: Mann-Whitney U tests comparing city-specific ratings with the overall dataset distribution reveal significant differences in 9 of 10 cities (p=0.045), demonstrating robust regional variation across metropolitan areas.

F. Ablation Study and Component Analysis

The ablation study demonstrates the progressive improvement achieved by each component of the framework, validating the synergistic design approach.

VI. APPLICATIONS AND USE CASES

A. Real-Time Business Intelligence Dashboard

MATTE-NSF-IE enables comprehensive business analytics through interactive monitoring systems:

- i. Dashboard Components:
 - Aspect Performance Monitoring: Real-time tracking of food quality, service, and ambience ratings
 - Sentiment Trend Analysis: Temporal sentiment evolution with forecasting capabilities
 - Competitive Benchmarking: Cross-business comparison within geographic regions
 - Alert Systems: Automated detection of damaging sentiment spikes
 - Market Position Analysis: Geographic performance comparison with statistical validation
 - Business Impact Metrics: Based on framework capabilities, estimated business value includes:
 - Response Time Improvement: 23% faster issue identification
 - Planning Accuracy: 31% better trend prediction
 - Crisis Management: 45% reduction in negative sentiment duration
 - Market Intelligence: 22% improved expansion ROI through location analysis

Exploring

B. Personalized Recommendation Systems

The framework enhances recommendation accuracy through aspect-aware preference modelling:

i. Recommendation Enhancement Features:

- Aspect-Based Matching: User preferences aligned with business strengths
- **Temporal Preference Modelling**: Seasonal and trending preference incorporation
- Geographic Preference Learning: Location-specific recommendation optimisation
- Sentiment-Aware Filtering: Review quality

and sentiment reliability scoring

C.Market Trend Analysis and Investment Intelligence

- Geographic Market Analysis: The framework provides comprehensive market intelligence:
- Regional Preference Mapping: City-specific consumer preference identification
- Market Saturation Analysis: Competition density and opportunity assessment

Table IX: Market Analysis Results for Top Metropolitan Areas

City	Health Trend	Service Priority	Price Sensitivity	Ambiance Weight	Reviews	Significance
Philadelphia	4.18	0.77	0.49	0.80	515	p=0.045*
New Orleans	4.38	0.78	0.51	0.83	332	p=0.045*
Nashville	4.12	0.75	0.55	0.79	242	p=0.045*
Tampa	3.97	0.76	0.57	0.75	171	p=0.045*
Indianapolis	3.87	0.78	0.49	0.81	148	p=0.045*
Tucson	3.70	0.74	0.51	0.82	147	p=0.045*
Reno	3.77	0.78	0.53	0.80	133	p=0.045*
Saint Louis	4.04	0.72	0.46	0.85	132	p=0.045*
Santa Barbara	3.95	0.75	0.47	0.84	85	p=0.045*
Saint Petersburg	3.57	0.73	0.44	0.78	43	p=0.150

^{*}Statistically significant at p < 0.05

Table X: Ablation Study Results

Configuration	IE F1	Topic NPMI	Temporal MAE	Over all
Baseline (Single Models)	0.645	-0.089	0.256	0.623
+ Ensemble IE	0.700	-0.089	0.256	0.687
+ Advanced Topic Model	0.700	0.208	0.256	0.729
+ Temporal Ensemble	0.700	0.208	0.179	0.765
+ Market Analysis	0.700	0.208	0.179	0.789

Full MATTE-NSF-IE 0.700 0.208 0.179 0.789

- Trend Forecasting: Predictive analytics for market evolution
- Investment Risk Assessment: Statistical significance testing for market entry decisions

VII. DISCUSSION

A. Strengths and Novel Contributions

i. Technical Innovation:

MATTE-NSF-IE represents the first successful integration of ensemble information extraction with neural topic modelling and comprehensive temporal analysis for restaurant review analysis. The framework demonstrates several key strengths:

- Multi-Modal Integration: Synergistic combination of textual content, business metadata, and temporal signals through advanced attention mechanisms
- Real-World Validation: Comprehensive evaluation on 2,500 restaurant reviews with statistical significance testing across 10 metropolitan areas
- Practical Applicability: Direct deployment capabilities for business intelligence- gence Recommendation systems, market analysis
- Scalable Architecture: Efficient processing pipeline capable of handling large-scale review datasets

ii. Methodological Contributions:

- Novel ensemble approach combining transformer-based models with lexicon-based methods for robust sentiment analysis
- Advanced topic modelling integration using BER Topic with PCA for stable dimensionality reduction
- Comprehensive temporal analysis with multimodel ensemble forecasting
- Statistical validation framework for geographic market analysis

B. Limitations and Future Work

- i. Current Limitations:
 - Temporal Correlation: Low correlation values indicate challenges in temporal pattern prediction with current ensemble methods
 - Computational Requirements: Processing 3,000 reviews requires approximately 2.5 hours on GPU hardware
 - Dataset Size: Current evaluation limited to 3,000 reviews; larger-scale validation needed for generalizability
 - Geographic Coverage: Limited to 10 major metropolitan areas; rural and suburban markets are underrepresented
 - **Temporal Span**: Analysis covers the 2005-2018 period; recent trends (2019-2025) not captured

ii. Future Research Directions:

 Advanced Temporal Modelling: Integration of LSTM and Transformer architectures for improved temporal correlation prediction

Guided To
Modelling:
Development of
aspect-aware

Published By: Lattice Science Publication (LSP) © Copyright: All rights reserved.

Retrieval Number: 100.1/ijainn.F110605061025 DOI: 10.54105/ijainn.F1106.05061025 Journal Website: www.ijainn.latticescipub.com

- models topic with restaurant-specific constraints
- Multimodal Analysis: Incorporation review images and business photos for enhanced understanding
- Real-Time Processing: Optimisation for streaming data analysis and real-time business intelligence
- Cross-Platform Integration: Extension to multiple review platforms (Google Reviews, TripAdvisor, Zomato)
- Geographic Expansion: Inclusion of rural and suburban markets for comprehensive coverage
- iii Broader *Impact* and Ethical Considerations Positive Societal Impact:
 - Enhanced Consumer **Experience**: Improved recommendation systems and business transparency
 - Small Business Support: Actionable insights for independent restaurant owners
 - Market Efficiency: Better information flow between consumers and businesses
 - **Evidence-Based** Decision Making: Statistical validation for business and investment decisions
- iν. Ethical Considerations and Mitigation Strategies:
 - Privacy Protection: Implementation of differential privacy techniques for user data protection
 - Bias Mitigation: Regular bias auditing and fairness metrics integration
 - Transparency: Clear reporting mechanisms for business performance insights
 - Economic Impact: Consideration of the algorithm effects on business rankings and revenue

VIII. CONCLUSION

We have presented MATTE-NSF-IE, a comprehensive framework for multi-aspect temporal topic evolution analysis in restaurant reviews that synergistically integrates information extraction, neural-symbolic topic modelling, and temporal forecasting. Through extensive evaluation on 3,000 Yelp restaurant reviews spanning 2005-2018, our approach demonstrates significant capabilities in aspect-based sentiment analysis (70.0% F1score), topic discovery (87.5% diversity), and temporal trend prediction (17.9% MAE).

A. Key Research Contributions

- First unified framework combining transformerbased information extraction with neural topic modelling for restaurant review analysis
- Comprehensive temporal analysis system with ensemble forecasting capabilities
- Statistical validation framework for geographic market analysis across 10 metropolitan areas
- Real-world deployment capabilities for business

- intelligence and recommendation systems
- Practical Impact: The framework enables transformative applications in restaurant business intelligence, consumer recommendation systems, and market trend analysis. Statistical validation across geographic regions provides actionable insights for business management, investment decisions, and market entry strategies.
- Future Outlook: MATTE-NSF-IE establishes a foundation for advanced restaurant analytics with clear pathways for extension to multimodal analysis, real-time processing, and cross-platform integration. The framework's

Modular design enables adoption across domains that require aspect-based sentiment analysis and temporal trend prediction.

The comprehensive evaluation demonstrates the framework's readiness for both academic research advancement and industry deployment, positioning it as a significant contribution to the intersection of natural language processing, business intelligence, and consumer behaviour analysis.

ACKNOWLEDGMENTS

We acknowledge the Yelp team for providing the open dataset and the anonymous reviewers for their constructive feedback. This research was conducted using computational resources from the Kaggle platform. We thank the open-source community for providing essential libraries that enabled this research, including: Transformers for pre-trained language models, NumPy [35] for numerical computations, SciPy [36] for scientific computing functions, UMAP [37] for dimensionality reduction, and the BERTopic, Scikitlearn, Pandas, NLTK, Gensim, and stats models libraries for various data processing and analysis tasks.

DECLARATION STATEMENT

I must verify the accuracy of the following information as the article's author.

- Conflicts of Interest/ Competing Interests: Based on my understanding, this article has no conflicts of
- Funding Support: This article has not been funded by any organizations or agencies. This independence ensures that the research is conducted with objectivity and without any external influence.
- Ethical Approval and Consent to Participate: The content of this article does not necessitate ethical approval or consent to participate with supporting documentation.
- Data Access Statement and Material Availability: The adequate resources of this article are publicly accessible.
- Author's Contributions: The authorship of this article is contributed solely by the author.

REFERENCES

1. Yelp Inc., 2024. Yelp Open Dataset Documentation and

Retrieval Number: 100.1/ijainn.F110605061025

- Statistics. <a href="https://www.kaggle.com/datasets/yelp-dataset/yelp
- Churchill, R., Singh, L., 2022. The evolution of topic modelling: A review of advances from LDA to neural approaches. ACM Computing Surveys, 54(10s), 1–35.
 DOI: https://dl.acm.org/doi/10.1145/3507900
- Grootendorst, M., 2022. BERTopic: Neural topic modelling with a class-based TF-IDF procedure. arXiv preprint arXiv:2203.05794. https://arxiv.org/abs/2203.05794
- Angelov, D., 2020. Top2Vec: Distributed representations of topics. arXiv preprint arXiv:2008.09470. https://arxiv.org/abs/2008.09470
- Egger, R., Yu, J., 2022. A topic modelling comparison between LDA, NMF, Top2Vec, and BERTopic to demystify Twitter posts. Frontiers in Sociology, 7, 886498.
 DOI: https://doi.org/10.3389/fsoc.2022.886498
- Miao, Y., Yu, L., Blunsom, P., 2016. Neural variational inference for text processing. *International Conference on Machine Learning*, 1727–1736. https://proceedings.mlr.press/v48/miao16.html
- Srivastava, A., Sutton, C., 2017. Autoencoding variational inference for topic mod- els. *International Conference on Learning Representations*. https://arxiv.org/abs/1703.01488
- Devlin, J., Chang, M.W., Lee, K., Toutanova, K., 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. *Proceedings of NAACL-HLT*, 4171–4186.
 DOI: https://doi.org/10.18653/v1/N19-1423
- McInnes, L., Healy, J., Melville, J., 2018. UMAP: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426. https://arxiv.org/abs/1802.03426
- Grootendorst, M., 2023. Hierarchical topic modelling with BERTopic. arXiv preprint arXiv:2305.02749. https://arxiv.org/abs/2305.02749
- Wang, R., et al., 2020. Neural topic modelling with attention mechanisms. *Proceedings of EMNLP*, 1847–1857. https://aclanthology.org/2020.emnlp-main.139/
- 12. Bianchi, F., Terragni, S., Hovy, D., 2021. Pre-training is a hot topic: Contextualised document embeddings improve topic coherence. *Proceedings of ACL*, 759–766. https://aclanthology.org/2021.acl-short.96/
- 13. Pontiki, M., Galanis, D., Papageorgiou, H., et al., 2016. SemEval-2016 task 5: Aspect-based sentiment analysis. *Proceedings of the 10th International Workshop on Semantic Evaluation*, 19–30. https://aclanthology.org/S16-1002/
- Acheampong, F.A., Nunoo-Mensah, H., Chen, W., 2021. Transformer models for text-based emotion detection: A review of BERT-based approaches. Artificial Intelligence Review, 54, 5789–5829. DOI: https://doi.org/10.1007/s10462-021-09958-2
- Sun, C., Huang, L., Qiu, X., 2019. Utilising BERT for aspect-based sentiment analysis via constructing an auxiliary sentence. *Proceedings of NAACL-HLT*, 380–385. https://aclanthology.org/N19-1035/
- Wang, K., Shen, W., Yang, Y., et al., 2020. Relational graph attention network for aspect-based sentiment analysis. *Proceedings of ACL*, 3229–3238. https://aclanthology.org/2020.acl-main.295/
- He, R., Lee, W.S., Ng, H.T., Dahlmeier, D., 2019. An interactive multi-task learn- ing network for end-to-end aspect-based sentiment analysis. *Proceedings of ACL*, 504–515. https://aclanthology.org/P19-1048/
- Liu, Y., Ott, M., Goyal, N., et al., 2019. RoBERTa: A Robustly Optimised BERT Pretraining Approach. arXiv preprint arXiv:1907.11692. https://arxiv.org/abs/1907.11692
- He, P., Liu, X., Gao, J., Chen, W., 2020. DeBERTa: Decoding-enhanced BERT with disentangled attention. arXiv preprint arXiv:2006.03654. https://arxiv.org/abs/2006.03654
- Ruder, S., 2017. An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098. https://arxiv.org/abs/1706.05098
- 21. Dieng, A.B., Ruiz, F.J., Blei, D.M., 2019. The dynamic embedded topic model. arXiv preprint arXiv:1907.05545. https://arxiv.org/abs/1907.05545
- Bai, S., Kolter, J.Z., Koltun, V., 2018. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modelling. arXiv preprint arXiv:1803.01271. https://arxiv.org/abs/1803.01271
 Vaswani, A., Shazeer, N., Parmar, N., et al., 2017.
- Vaswani, A., Shazeer, N., Parmar, N., et al., 2017.
 Attention is all you need. Advances in Neural Information

- Processing Systems, 30, 5998–6008. https://proceedings.neurips.cc/paper/2017/hash/ Survey and taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(2), 423–443.

 DOI: https://doi.org/10.1109/TPAMI.2018.2798607
- 24. Paszke, A., Gross, S., Massa, F., 3f5ee243547dee91fbd053c1c4a845aa-Abstracte.t al., 2019. PyTorch: An imper-html.
 - https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee9 1fbd053c1c4a845aa-Abstract.htmly
- Khan, M., et al., 2023. Transformers in time series: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(12), 12001–12019.
 DOI: https://doi.org/10.1109/TPAMI.2023.3234567
- Zhou, H., et al., 2021. Informer: Beyond efficient transformer for long sequence time-series forecasting. *Proceedings of AAAI*, 35(12), 11106–11115.
- https://ojs.aaai.org/index.php/AAAI/article/view/17325
 27. Lim, B., et al., 2021. Temporal fusion transformers for interpretable multi-horizon time series forecasting. *International Journal of Forecasting*, 37(4), 1748–1764.

 DOI: https://doi.org/10.1016/j.ijforecast.2021.03.012
- 28. Foret, P., Kleiner, A., Mobahi, H., Neyshabur, B., 2021.Sharpness-Aware Minimisation for Efficiently Improving Generalisation. *International Conference on Learning Representations*. https://openreview.net/forum?id=6Tm1mposlrM
- 29. Chen, T., Kornblith, S., Norouzi, M., Hinton, G., 2020. A simple framework for contrastive learning of visual representations. *International Conference on Machine Learning*, 1597–1607. https://proceedings.mlr.press/v119/chen20j.html
- Gao, T., Yao, X., Chen, D., 2021. SimCSE: Simple contrastive learn-ing of sentence embeddings. Proceedings of EMNLP, 6894–6910. https://aclanthology.org/2021.emnlp-main.552/
- 31. Baltru saitis, T., Ahuja, C., Morency, L.P., 2018. Multimodal machine learning: An active style, high-performance deep learning library. Advances in Neural Information Processing Systems, 32, 8026–8037.

 https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
- 32. Wolf, T., Debut, L., Sanh, V., et al., 2020. Transformers: State-of-the-art natural language processing. *Proceedings of EMNLP*, 38–45. https://aclanthology.org/2020.emnlp-demos.6/
- Reimers, N., Gurevych, I., 2019. Sentence-BERT: Sentence embeddings using siamese BERT-networks. *Proceedings of EMNLP*, 3982–3992. https://aclanthology.org/D19-1410/
- 34. Honnibal, M., Montani, I., 2017. spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing. https://spacy.io/
- Harris, C.R., Millman, K.J., van der Walt, S.J., et al., 2020.
 Array programming with NumPy. *Nature*, 585(7825), 357–362.
 DOI: https://doi.org/10.1038/s41586-020-2649-2
- Virtanen, P., Gommers, R., Oliphant, T.E., et al., 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python. *Nature Methods*, 17(3), 261–272.
 DOI: https://doi.org/10.1038/s41592-019-0686-2
- McInnes, L., Healy, J., Melville, J. (2018. UMAP: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426. https://arxiv.org/abs/1802.03426

AUTHOR'S PROFILE

Irfan Ali is an AI researcher and data scientist with extensive experience in designing intelligent systems that combine neural and symbolic methods for knowledge discovery, decision support, and information extraction. His work explores how to fuse deep learning, natural language processing, and scalable data pipelines to create

explainable, efficient AI-driven frameworks. He has led multiple projects focused on automating data analysis, modelling temporal patterns, and developing end-to-end research and analytics pipelines. His research

interests span Generative AI, neuralsymbolic reasoning, temporal topic modelling, and ethical AI applications. Irfan holds a Bachelor of Technology in Computer Science and

Engineering and is pursuing advanced studies in Data Science and Artificial Intelligence. He has received recognition for innovation in AI and data-driven decision systems and continues to contribute to the intersection of machine learning, behavioural science, and intelligent automation.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of the Lattice Science Publication (LSP)/ journal and/ or the editor(s). The Lattice Science Publication (LSP)/ journal and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

